A Glimpse at Boolean Linear Dynamical Systems

Yinfeng Zhu

Shanghai Jiao Tong University

Apr 25, 2015

Joint with Yaokun Wu & Zeying Xu
A dynamical system on digraph

Figure: Γ
A dynamical system on digraph

Figure: Γ

\{2, 5\}
A dynamical system on digraph

\[\{2, 5\} \rightarrow \{3\} \]

Figure: Γ
A dynamical system on digraph

Figure: Γ

$\{2, 5\} \rightarrow \{3\} \rightarrow \{4\}$
A dynamical system on digraph

Figure: Γ

$\{2, 5\} \rightarrow \{3\} \rightarrow \{4\} \rightarrow \{1, 5\}$
A dynamical system on digraph

{2, 5} → {3} → {4} → {1, 5} → {2, 3}

Figure: \(\Gamma\)
A dynamical system on digraph

{2, 5} → {3} → {4} → {1, 5} → {2, 3} → {3, 4}

Figure: Γ
A dynamical system on digraph

Figure: Γ

\{2, 5\} \rightarrow \{3\} \rightarrow \{4\} \rightarrow \{1, 5\} \rightarrow \{2, 3\} \rightarrow \{3, 4\} \rightarrow \{1, 4, 5\}
A dynamical system on digraph

Figure: \(\Gamma \)

\{2, 5\} \rightarrow \{3\} \rightarrow \{4\} \rightarrow \{1, 5\} \rightarrow \{2, 3\} \rightarrow \{3, 4\} \rightarrow \{1, 4, 5\} \rightarrow \{1, 2, 3, 5\}
Phase space

Figure: Phase space of Γ
Phase space

Figure: Phase space of Γ
Boolean linear dynamical systems

Let k be a positive integer and $\mathcal{P}_k = \{1, 2, \ldots, k\}$. Let \(\text{Set}_k \) denote \(2^{\mathcal{P}_k} \setminus \{\emptyset\} \).

A map f from \(\text{Set}_k \) to \(\text{Set}_k \) is essential provided $f(A) \cup f(B) = f(A \cup B)$, and $f(\mathcal{P}_k) = \mathcal{P}_k$.

Essential maps are just digraphs without sinks and sources, or just Boolean matrices without zero lines.

Let F be a set of essential maps on \(\text{Set}_k \), the iterations of elements of F giving the dynamics of the system. We call \((\text{Set}_k, F) \) a Boolean linear dynamical system.
Let k be a positive integer and $[k] = \{1, 2, \ldots, k\}$. Let Set_k denote $2^\[k\] \setminus \{\emptyset\}$. A map f from Set_k to Set_k is essential provided

- $f(A) \cup f(B) = f(A \cup B)$, and
- $f([k]) = [k]$
Boolean linear dynamical systems

Let k be a positive integer and $[k] = \{1, 2, \ldots, k\}$. Let Set_k denote $2^{[k]} \setminus \{\emptyset\}$. A map f from Set_k to Set_k is **essential** provided

- $f(A) \cup f(B) = f(A \cup B)$, and
- $f([k]) = [k]

Essential maps are just digraphs without sinks and sources, or just Boolean matrices without zero lines.
Let k be a positive integer and $[k] = \{1, 2, \ldots, k\}$. Let Set_k denote $2^{[k]} \setminus \{\emptyset\}$. A map f from Set_k to Set_k is essential provided
\begin{itemize}
 \item $f(A) \cup f(B) = f(A \cup B)$, and
 \item $f([k]) = [k]$
\end{itemize}

Essential maps are just digraphs without sinks and sources, or just Boolean matrices without zero lines.

Let \mathcal{F} be a set of essential maps on Set_k, the iterations of elements of \mathcal{F} giving the dynamics of the system. We call $(\text{Set}_k, \mathcal{F})$ a **Boolean linear dynamical system**.
Longest path in a phase space

The phase space of Boolean linear dynamical system \((\text{Set}_k, F)\) denoted by \(\text{PS}_F\), is the digraph with vertex set \(\text{Set}_k\) and arc set \(\{s \rightarrow f(s) : s \subset \{1, \ldots, k\}, f \in F\}\).

We use \(g(F)\) to denote the length of longest path in \(\text{PS}_F\), and \(g(A \rightarrow B)\) to denote the length of longest path in \(\text{PS}_F\) from \(A\) to \(B\) for any \(A, B \in \text{Set}_k\).

The Boolean linear dynamical system \((\text{Set}_k, F)\) is primitive provided every long enough walk in \(\text{PS}_F\) will reach \(\{1, \ldots, k\}\).

If \(F\) is primitive, we say \(g(F)\) is the primitive index of \(F\).
The phase space of Boolean linear dynamical system \((\text{Set}_k, \mathcal{F})\) denoted by \(\mathcal{PS}_\mathcal{F}\), is the digraph with vertex set \(\text{Set}_k\) and arc set
\[\{s \rightarrow f(s) : s \subset [k], f \in \mathcal{F}\}\]
Longest path in a phase space

The phase space of Boolean linear dynamical system $(\text{Set}_k, \mathcal{F})$ denoted by $\mathcal{PS}_\mathcal{F}$, is the digraph with vertex set Set_k and arc set
\[
\{s \to f(s) : s \subset [k], f \in \mathcal{F}\}
\]

We use $g(\mathcal{F})$ to denote the length of longest path in $\mathcal{PS}_\mathcal{F}$, and $g(\mathcal{F})_{A \to B}$ to denote the length of longest path in $\mathcal{PS}_\mathcal{F}$ from A to B for any $A, B \in \text{Set}_k$.
Longest path in a phase space

The phase space of Boolean linear dynamical system \((\text{Set}_k, \mathcal{F})\) denoted by \(\mathcal{PS}_\mathcal{F}\), is the digraph with vertex set \(\text{Set}_k\) and arc set \(\{s \to f(s) : s \subset [k], f \in \mathcal{F}\}\)

We use \(g(\mathcal{F})\) to denote the length of longest path in \(\mathcal{PS}_\mathcal{F}\), and \(g(\mathcal{F})_{A \to B}\) to denote the length of longest path in \(\mathcal{PS}_\mathcal{F}\) from \(A\) to \(B\) for any \(A, B \in \text{Set}_k\).

The Boolean linear dynamical system \((\text{Set}_k, \mathcal{F})\) is primitive provided every long enough walk in \(\mathcal{PS}_\mathcal{F}\) will reach \([k]\).
Longest path in a phase space

The phase space of Boolean linear dynamical system \((\text{Set}_k, \mathcal{F})\) denoted by \(\mathcal{PS}_\mathcal{F}\), is the digraph with vertex set \(\text{Set}_k\) and arc set \(\{s \to f(s) : s \subset [k], f \in \mathcal{F}\}\).

We use \(g(\mathcal{F})\) to denote the length of longest path in \(\mathcal{PS}_\mathcal{F}\), and \(g(\mathcal{F})_{A \to B}\) to denote the length of longest path in \(\mathcal{PS}_\mathcal{F}\) from \(A\) to \(B\) for any \(A, B \in \text{Set}_k\).

The Boolean linear dynamical system \((\text{Set}_k, \mathcal{F})\) is primitive provided every long enough walk in \(\mathcal{PS}_\mathcal{F}\) will reach \([k]\).

If \(\mathcal{F}\) is primitive, we say \(g(\mathcal{F})\) is the primitive index of \(\mathcal{F}\).
Reachability

Theorem (Coxson, Laroson, Schneider)

Let Γ be a digraph with k vertices. If $|B| = 1$, then $g(\{\Gamma\})_{A \rightarrow B} \leq k$.

Reachability

Theorem (Coxson, Laroson, Schneider)
Let Γ be a digraph with k vertices. If $|B| = 1$, then $g(\{\Gamma\})_{A \to B} \leq k$.

Theorem (Wu, Xu, Z.)
Let Γ be a digraph with diameter D_{Γ}. Then for any $A, B \in \text{Set}_k$, $g(\{\Gamma\})_{A \to B} \leq |B|D_{\Gamma}$. If Γ is primitive, then for any $A \in \text{Set}_k$ and any positive integer s, $|\Gamma^s A| \geq \frac{s}{D_{\Gamma}}$.
Absolute upper bound of the primitive index

Let F be a primitive set of essential maps on Set^k with $g(F) = 2^k - 2$. That means there exists a unique path in PS_F with length $2^k - 2$. This path induces a total order π_F on Set^k.

Figure: F and PS_F
Absolute upper bound of the primitive index

Let \mathcal{F} be a primitive set of essential maps on Set_k with $g(\mathcal{F}) = 2^k - 2$. That means there exists a unique path in $\mathcal{P}S_{\mathcal{F}}$ with length $2^k - 2$. This path induces a total order $\pi_{\mathcal{F}}$ on Set_k.
Absolute upper bound of the primitive index

Let \mathcal{F} be a primitive set of essential maps on Set_k with $g(\mathcal{F}) = 2^k - 2$. That means there exists a unique path in $\mathcal{P}S_{\mathcal{F}}$ with length $2^k - 2$. This path induces a total order $\pi_{\mathcal{F}}$ on Set_k.

![Diagram of paths and order]
Absolute upper bound of the primitive index

Let \mathcal{F} be a primitive set of essential maps on Set_k with $g(\mathcal{F}) = 2^k - 2$. That means there exists a unique path in $\mathcal{PS}_\mathcal{F}$ with length $2^k - 2$. This path induces a total order $\pi_\mathcal{F}$ on Set$_k$.

Figure: \mathcal{F} and $\mathcal{PS}_\mathcal{F}$
The broken Boolean lattice, denoted B_k, is ordered by inclusion.

$\{1, 2, 3\}$

$\{1, 2\}$

$\{1, 3\}$

$\{2, 3\}$

$\{1\}$

$\{2\}$

$\{3\}$

Figure: B_3

Lemma (Wu, Z.)

Let π be a total order on Set_k. There exist a set of essential maps F such that $g(F) = 2^k - 2$ and $\pi F = \pi$ if and only if π is a linear extension of B_k.
The broken Boolean lattice, denoted B_k, is Set_k ordered by inclusion.

\[
\begin{array}{c}
\{1, 2, 3\} \\
| \\
\{1, 2\} & \{1, 3\} & \{2, 3\} \\
| & \times & \times \\
\{1\} & \{2\} & \{3\}
\end{array}
\]

Figure: B_3
Broken Boolean lattice

The broken Boolean lattice, denoted B_k, is Set_k ordered by inclusion.

![Diagram of B_3]

Figure: B_3

Lemma (Wu, Z.)

Let π be a total order on Set_k. There exist a set of essential maps \mathcal{F} such that $g(\mathcal{F}) = 2^k - 2$ and $\pi_{\mathcal{F}} = \pi$ if and only if π is a linear extension of B_k.
Definition

\[\gamma_{k,\pi} = \min\{|F| : g(F) = 2^k - 2, \pi_F = \pi\}. \]
Definition

\(\gamma_{k, \pi} = \min\{ |\mathcal{F}| : g(\mathcal{F}) = 2^k - 2, \pi_{\mathcal{F}} = \pi \}. \)

\(\gamma_k = \min\{ \gamma_{k, \pi} : \pi \text{ is a linear extension of } B_k \}. \)
Definition

\[\gamma_{k,\pi} = \min\{|F| : g(F) = 2^k - 2, \pi F = \pi\}. \]
\[\gamma_k = \min\{\gamma_{k,\pi} : \pi \text{ is a linear extension of } B_k\}. \]

Theorem (Cohen, Seller)

\[\gamma_k \leq 2^k - 2 \]
Definition

\(\gamma_{k,\pi} = \min\{|\mathcal{F}| : g(\mathcal{F}) = 2^k - 2, \pi_{|\mathcal{F}|} = \pi\} \).

\(\gamma_k = \min\{\gamma_{k,\pi} : \pi \text{ is a linear extension of } B_k\} \).

Theorem (Cohen, Seller)

\(\gamma_k \leq 2^k - 2 \)

Theorem (Wu, Z.)

Let \(\pi \) be the lexicographical order on \(\text{Set}_k \). Then \(\gamma_k \leq \gamma_{k,\pi} = k \).
Some problems

\[\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\}, \gamma_6 = \ldots \]

Is it true that \(\gamma_4 \leq \gamma_5 \leq \gamma_6 \leq \ldots \) ?

Nontrivial lower bound for \(\gamma_k \)?

Which kind of total orders \(\pi \) on \(\text{Set}^k \) give us a small \(\gamma_k, \pi \)?

Let \(F = \{ \Gamma_1, \Gamma_2, \ldots, \Gamma_r \} \) be a primitive set of essential maps on \(\text{Set}^k \) and \(A, B \in \text{Set}^k \) in \(\text{PS}_F \). Can we estimate \(g(F) \)?

\[g(F) \leq |B|^{D_{\Gamma_1}D_{\Gamma_2} \ldots D_{\Gamma_r}} \]

Thank you!
Some problems

\[\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\} \]
Some problems

\[\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\} \]

\[\gamma_5 = ? \]
Some problems

\(\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\}\)

- \(\gamma_5 = ? \quad \gamma_6 = ? \cdots\)
Some problems

\(\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\} \)

- \(\gamma_5 =? \) \(\gamma_6 =? \cdots \)

- Is it true that \(\gamma_4 \leq \gamma_5 \leq \gamma_6 \leq \cdots \) ?

Thank you!
Some problems

\(\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\} \)

- \(\gamma_5 =? \gamma_6 =? \cdots \)
- Is it true that \(\gamma_4 \leq \gamma_5 \leq \gamma_6 \leq \cdots \)?
- Nontrivial lower bound for \(\gamma_k \)?
Some problems

\(\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\} \)

- \(\gamma_5 = ? \) \(\gamma_6 = ? \cdots \)
- Is it true that \(\gamma_4 \leq \gamma_5 \leq \gamma_6 \leq \cdots \) ?
- Nontrivial lower bound for \(\gamma_k \)?
- Which kind of total orders \(\pi \) on \(\text{Set}_k \) give us a small \(\gamma_{k,\pi} \)?
Some problems

\(\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\}\)

- \(\gamma_5 = ? \quad \gamma_6 = ? \cdots\)
- Is it true that \(\gamma_4 \leq \gamma_5 \leq \gamma_6 \leq \cdots?\)
- Nontrivial lower bound for \(\gamma_k?\)
- Which kind of total orders \(\pi\) on \(\text{Set}_k\) give us a small \(\gamma_{k,\pi}\)?
- Let \(\mathcal{F} = \{\Gamma_1, \Gamma_2, \ldots, \Gamma_r\}\) be a primitive set of essential maps on \(\text{Set}_k\) and \(A, B \in \text{Set}_k\) in \(\mathcal{PS}_\mathcal{F}\). Can we estimate \(g(\mathcal{F})_{A \to B}\)?
Some problems

\(\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\} \)

- \(\gamma_5 = ? \) \(\gamma_6 = ? \cdots \)
- Is it true that \(\gamma_4 \leq \gamma_5 \leq \gamma_6 \leq \cdots \) ?
- Nontrivial lower bound for \(\gamma_k \)?
- Which kind of total orders \(\pi \) on \(\text{Set}_k \) give us a small \(\gamma_{k, \pi} \)?
- Let \(\mathcal{F} = \{ \Gamma_1, \Gamma_2, \ldots, \Gamma_r \} \) be a primitive set of essential maps on \(\text{Set}_k \) and \(A, B \in \text{Set}_k \) in \(\mathcal{PS}_\mathcal{F} \). Can we estimate \(g(\mathcal{F})_{A \rightarrow B} \)?
- \(g(\mathcal{F})_{A \rightarrow B} \leq |B|D_{\Gamma_1}D_{\Gamma_2} \cdots D_{\Gamma_r} \)?
Some problems

\[\gamma_2 = 1, \gamma_3 = 2, \gamma_4 = 3, \gamma_5 \in \{2, 3, 4\} \]

- \(\gamma_5 = ? \quad \gamma_6 = ? \cdots \)
- Is it true that \(\gamma_4 \leq \gamma_5 \leq \gamma_6 \leq \cdots ? \)
- Nontrivial lower bound for \(\gamma_k \)?
- Which kind of total orders \(\pi \) on \(\text{Set}_k \) give us a small \(\gamma_{k, \pi} \)?
- Let \(\mathcal{F} = \{\Gamma_1, \Gamma_2, \ldots, \Gamma_r\} \) be a primitive set of essential maps on \(\text{Set}_k \) and \(A, B \in \text{Set}_k \) in \(\mathcal{P} \mathcal{S}_\mathcal{F} \). Can we estimate \(g(\mathcal{F})_{A \rightarrow B} \)?
- \(g(\mathcal{F})_{A \rightarrow B} \leq |B|D_{\Gamma_1}D_{\Gamma_2} \ldots D_{\Gamma_r} \)?

Thank you!