

Yinfeng Zhu

Ural Federal University

International (55th All-Russian) Youth School-Conference

February 3, 2024

Deterministic finite automata

A deterministic finite automaton (DFA) is a triple $\mathcal{A} = (Q, \Sigma, \delta)$ where

- \triangleright Q is a finite set, called the state set;
- \triangleright Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.

 Σ^* stands for the set of all words over Σ including the empty word ϵ . The function δ extends to a function $Q \times \Sigma^* \to Q$ (still denoted by δ) via the following recursion: For every $q \in Q$, we set

 $\delta(q, \epsilon) = q$ $\delta(q, wa) = \delta(\delta(q, w), a)$

for all $w \in \Sigma^*$ and $a \in \Sigma$. To simplify the notation, we often write q.w for $\delta(q,w)$ and P.w for $\{\delta(q,w) : q \in P\}$, where $P \subseteq Q$.

Deterministic finite automata

A deterministic finite automaton (DFA) is a triple $\mathcal{A} = (Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- \triangleright Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.

 Σ^* stands for the set of all words over Σ including the empty word ϵ . The function δ extends to a function $Q \times \Sigma^* \to Q$ (still denoted by δ) via the following recursion: For every $q \in Q$, we set

 $\delta(q,\epsilon) = q$ $\delta(q,wa) = \delta(\delta(q,w),a)$

for all $w \in \Sigma^*$ and $a \in \Sigma$.

To simplify the notation, we often write q.w for $\delta(q,w)$ and P.w for $\{\delta(q,w): q \in P\}$, where $P \subseteq Q$.

Deterministic finite automata

A deterministic finite automaton (DFA) is a triple $\mathcal{A} = (Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- \triangleright Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.

 Σ^* stands for the set of all words over Σ including the empty word ϵ . The function δ extends to a function $Q \times \Sigma^* \to Q$ (still denoted by δ) via the following recursion: For every $q \in Q$, we set

 $\delta(q,\epsilon) = q$ $\delta(q,wa) = \delta(\delta(q,w),a)$

for all $w \in \Sigma^*$ and $a \in \Sigma$. To simplify the notation, we often write q.w for $\delta(q, w)$ and P.w for $\{\delta(q, w) : q \in P\}$, where $P \subseteq Q$.

Completely reachable automata

Let $\mathcal{A} = (Q, \Sigma, \delta)$ be a DFA.

- ► A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if P = Q.w for some word $w \in \Sigma^*$.
- ► A DFA is completely reachable if every non-empty subset of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Completely reachable automata

Let $\mathcal{A} = (Q, \Sigma, \delta)$ be a DFA.

- ► A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if P = Q.w for some word $w \in \Sigma^*$.
- ► A DFA is completely reachable if every non-empty subset of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Completely reachable automata

Let $\mathcal{A} = (Q, \Sigma, \delta)$ be a DFA.

- ► A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if P = Q.w for some word $w \in \Sigma^*$.
- ► A DFA is completely reachable if every non-empty subset of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Digraph

A digraph is a quadruple G = (V, E, i, t) where V, E are non-empty sets and $i, t : E \to V$.

The elements in V are called vertices;

 \blacktriangleright the elements of *E* are called edges;

for an edge $e \in E$,

- the vertex i(e) is called the initial vertex of e;
- the vertex t(e) is called the terminal vertex of e.

Digraph

A digraph is a quadruple G = (V, E, i, t) where V, E are non-empty sets and $i, t : E \rightarrow V$.

- The elements in V are called vertices;
- \blacktriangleright the elements of *E* are called edges;

for an edge $e \in E$,

- the vertex i(e) is called the initial vertex of e;
- the vertex t(e) is called the terminal vertex of e.

Neighbours and degrees

Let v be a vertex in a digraph G.

- ▶ The out-neighbour of v is the set $\{i(e) : t(e) = v, e \in E\}$, denoted $N_+(v)$.
- ▶ The in-neighbour of v is the set $\{t(e) : i(e) = v, e \in E\}$, denoted $N_{-}(v)$.
- For a subset $U \in V$,
 - write $N_+(U)$ for the set $\{u : N_+(u), u \in U\}$;
 - write $N_{-}(U)$ for the set $\{u : N_{-}(u), u \in U\}$.
- The out-degree of v is the number of edges whose initial vertex is v, denoted d₊(v).
- The in-degree of v is the number of edges whose terminal vertex is v, denoted d_(v).

Neighbours and degrees

Let v be a vertex in a digraph G.

- ▶ The out-neighbour of v is the set $\{i(e) : t(e) = v, e \in E\}$, denoted $N_+(v)$.
- ▶ The in-neighbour of v is the set $\{t(e) : i(e) = v, e \in E\}$, denoted $N_{-}(v)$.
- ▶ For a subset $U \in V$,
 - write $N_+(U)$ for the set $\{u : N_+(u), u \in U\}$;
 - write $N_{-}(U)$ for the set $\{u : N_{-}(u), u \in U\}$.
- The out-degree of v is the number of edges whose initial vertex is v, denoted d₊(v).
- The in-degree of v is the number of edges whose terminal vertex is v, denoted d_(v).

Neighbours and degrees

Let v be a vertex in a digraph G.

- ▶ The out-neighbour of v is the set $\{i(e) : t(e) = v, e \in E\}$, denoted $N_+(v)$.
- ▶ The in-neighbour of v is the set $\{t(e) : i(e) = v, e \in E\}$, denoted $N_{-}(v)$.
- ▶ For a subset $U \in V$,
 - write $N_+(U)$ for the set $\{u : N_+(u), u \in U\}$;
 - write $N_{-}(U)$ for the set $\{u : N_{-}(u), u \in U\}$.
- The out-degree of v is the number of edges whose initial vertex is v, denoted d₊(v).
- The in-degree of v is the number of edges whose terminal vertex is v, denoted d_(v).

Road colorings

For a set X, write $\mathcal{P}(X)$ for the power set of X.

A road coloring of a finite digraph G = (V, E, i, t) is a function $\alpha : E \to \mathcal{P}(\Sigma) \setminus \{\emptyset\}$ such that for every vertex $v \in V$, the family of sets

$$\{\alpha(e): t(e) = v, e \in E\}$$

forms a partition of Σ .

Example

Automata from road colorings

Let $\alpha : E \to \mathcal{P}(\Sigma) \setminus \{\emptyset\}$ be a road coloring of G. Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$v.a = t(e)$$

where e is the edge such that i(e) = v and $a \in \alpha(e)$.

The road coloring α

- ▶ is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automaton;
- is called a completely reachable coloring if A(G, α) is a completely reachable automaton.

Automata from road colorings

Let $\alpha : E \to \mathcal{P}(\Sigma) \setminus \{\emptyset\}$ be a road coloring of G. Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$v.a = t(e)$$

where e is the edge such that i(e) = v and $a \in \alpha(e)$. The road coloring α

- ▶ is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automaton;
- is called a completely reachable coloring if A(G, α) is a completely reachable automaton.

Automata from road colorings

Let $\alpha : E \to \mathcal{P}(\Sigma) \setminus \{\emptyset\}$ be a road coloring of G. Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$v.a = t(e)$$

where e is the edge such that i(e) = v and $a \in \alpha(e)$. The road coloring α

- ▶ is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automaton;
- is called a completely reachable coloring if A(G, α) is a completely reachable automaton.

Problem

For a given digraph G, how to determine whether or not G admits a road coloring such that the correponding automaton fulfills some properties (i.e., synchronizing, completerly reachable, ...)?

Trahtman's Road Coloring Theorem

- The period of a strongly connected digraph G is the greatest common divisor of the lengths of its cycles, denoted p(G).
- A digraph is called aperiodic if its period equals 1.

Theorem (Trahtman¹, 2009)

Let G = (V, E, i, t) be a strongly connected digraph and $d = \max\{d_+(v), v \in V\}$. The following are equivalent.

- 1. The digraph G admits a synchronizing coloring.
- 2. The digraph G admits a synchronizing coloring with d colors.
- 3. The digraph G is aperiodic.

¹A. N. Trahtman (2009). "The road coloring problem". In: *Israel J. Math.* 172, pp. 51–60. ISSN: 0021-2172,1565-8511.

Completely reachable colorings

Theorem (Z., 2023+)

A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if

- 1. G is strongly connected,
- 2. G is aperiodic,
- 3. for every subset $U \subseteq V$, $|U| \le |N_{-}(U)|$.

Theorem (Z., 2023+)

Let $k \ge 2$ be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or not it admits a completely reachable with k colors is NP-complete.

Completely reachable colorings

Theorem (Z., 2023+)

A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if

- 1. G is strongly connected,
- 2. G is aperiodic,
- 3. for every subset $U \subseteq V$, $|U| \le |N_{-}(U)|$.

Theorem (Z., 2023+)

Let $k \ge 2$ be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or not it admits a completely reachable with k colors is NP-complete.

Theorem (Cyclic Decomposition Theorem)

Let G be a strongly connected digraph of period p. The vertex set can be partition into p sets $\{C_i : i \in \mathbb{Z}_p\}$ such that $N_+(C_i) = C_{i+1}$ for every $i \in \mathbb{Z}_p$.

Moreover, for each vertex $v \in C_j$ for some j, there exists a positive integer k such that

$$N^k_-(v) = \underbrace{N_-(\cdots N_-(v))}_k (v) = C_j.$$

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.

The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w : (u, w) \in E, u \in U\}$, denoted N(U)

Theorem (Hall's Marriage Theorem)

Let H = (X, Y, E) be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.

The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w : (u, w) \in E, u \in U\}$, denoted N(U). Theorem (Hall's Marriage Theorem)

Let H = (X, Y, E) be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.

The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w : (u, w) \in E, u \in U\}$, denoted N(U).

Theorem (Hall's Marriage Theorem)

Let H = (X, Y, E) be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \le N(U)$.

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.

The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w : (u, w) \in E, u \in U\}$, denoted N(U).

Theorem (Hall's Marriage Theorem)

Let H = (X, Y, E) be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \le N(U)$.

Theorem (Z., 2023+)

A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if

- 1. G is strongly connected,
- 2. G is aperiodic,
- 3. for every subset $U \subseteq V$, $|U| \le |N_{-}(U)|$. (Hall's condition)

"⇒":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is A(G, α) = (V, Σ, δ).
- For every two vertices u, v, by completely reachability, there exists a word w such that $V.w = \{u\}$ and then $\delta(v, w) = u$. Then there exists a walk in G from v to u. This implies that G is strongly connected
- ▶ By Cyclic Decomposition Theorem, the vertex set *V* can be partitioned into *p* sets $\{C_i : i \in \mathbb{Z}_p\}$ such that $N_+(C_i) = C_{i+1}$ for every $i \in \mathbb{Z}_p$.

► Then for any word $w \in \Sigma^*$ and $i \in \mathbb{Z}_p$, $V.w \cap C_i \neq \emptyset$. Since every singleton set is reachable. we have p = 1 and then G is aperiodic.

► For a non-empty subset $U \subseteq V$, take a word $w = w'a \in \Sigma^*$ such that V.w = U. Let W be the set V.w'. Then

"⇒":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is A(G, α) = (V, Σ, δ).
- For every two vertices u, v, by completely reachability, there exists a word w such that V.w = {u} and then δ(v, w) = u. Then there exists a walk in G from v to u. This implies that G is strongly connected
- ▶ By Cyclic Decomposition Theorem, the vertex set *V* can be partitioned into *p* sets $\{C_i : i \in \mathbb{Z}_p\}$ such that $N_+(C_i) = C_{i+1}$ for every $i \in \mathbb{Z}_p$.
- ► Then for any word $w \in \Sigma^*$ and $i \in \mathbb{Z}_p$, $V.w \cap C_i \neq \emptyset$. Since every singleton set is reachable. we have p = 1 and then G is aperiodic.
- For a non-empty subset $U \subseteq V$, take a word $w = w'a \in \Sigma^*$ such that V.w = U. Let W be the set V.w'. Then

"⇒":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is A(G, α) = (V, Σ, δ).
- For every two vertices u, v, by completely reachability, there exists a word w such that V.w = {u} and then δ(v, w) = u. Then there exists a walk in G from v to u. This implies that G is strongly connected
- ▶ By Cyclic Decomposition Theorem, the vertex set *V* can be partitioned into *p* sets $\{C_i : i \in \mathbb{Z}_p\}$ such that $N_+(C_i) = C_{i+1}$ for every $i \in \mathbb{Z}_p$.

► Then for any word $w \in \Sigma^*$ and $i \in \mathbb{Z}_p$, $V.w \cap C_i \neq \emptyset$. Since every singleton set is reachable. we have p = 1 and then G is aperiodic.

For a non-empty subset $U \subseteq V$, take a word $w = w'a \in \Sigma^*$ such that V.w = U. Let W be the set V.w'. Then

"⇒":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is A(G, α) = (V, Σ, δ).
- For every two vertices u, v, by completely reachability, there exists a word w such that V.w = {u} and then δ(v, w) = u. Then there exists a walk in G from v to u. This implies that G is strongly connected
- ▶ By Cyclic Decomposition Theorem, the vertex set *V* can be partitioned into *p* sets $\{C_i : i \in \mathbb{Z}_p\}$ such that $N_+(C_i) = C_{i+1}$ for every $i \in \mathbb{Z}_p$.
- ► Then for any word $w \in \Sigma^*$ and $i \in \mathbb{Z}_p$, $V.w \cap C_i \neq \emptyset$. Since every singleton set is reachable. we have p = 1 and then G is aperiodic.
- ► For a non-empty subset $U \subseteq V$, take a word $w = w'a \in \Sigma^*$ such that V.w = U. Let W be the set V.w'. Then

"⇒":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is A(G, α) = (V, Σ, δ).
- For every two vertices u, v, by completely reachability, there exists a word w such that V.w = {u} and then δ(v, w) = u. Then there exists a walk in G from v to u. This implies that G is strongly connected
- ▶ By Cyclic Decomposition Theorem, the vertex set *V* can be partitioned into *p* sets $\{C_i : i \in \mathbb{Z}_p\}$ such that $N_+(C_i) = C_{i+1}$ for every $i \in \mathbb{Z}_p$.
- ► Then for any word $w \in \Sigma^*$ and $i \in \mathbb{Z}_p$, $V.w \cap C_i \neq \emptyset$. Since every singleton set is reachable. we have p = 1 and then G is aperiodic.
- For a non-empty subset U ⊆ V, take a word w = w'a ∈ Σ* such that V.w = U. Let W be the set V.w'. Then

"⇐":

- ▶ Define *H* to be the bipartite graph $H = (V_1, V_2, E_H)$ such that $V_1 = V_2 = V$ and $(u, v) \in E_H$ if there exists $e \in E$ such that t(e) = u and i(e) = v.
- ▶ Observe that for every non-empty subset $U \subseteq V_1$, then $|U| \leq |N(U)|$.

Let W be a non-empty subset of V_1 . Let H' be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H'.

Now we can define a function $f_W: V_2 \rightarrow V_1$ as following:

- 1. for $y \in V_2$ which is covered by edge $(x, y) \in M$, set $f_W(y) = x$;
- 2. for $y \in N(W)$ which is not covered by the matching M, set $f_W(y)$ to be an arbitrary vertex in $W \cap N(y)$.

3. for $y \in V_2 \setminus N(W)$, set $f_W(y)$ to be an arbitrary vertex in N(y). It is clear that $W = f_W(N(W))$.

"⇐":

- ▶ Define *H* to be the bipartite graph $H = (V_1, V_2, E_H)$ such that $V_1 = V_2 = V$ and $(u, v) \in E_H$ if there exists $e \in E$ such that t(e) = u and i(e) = v.
- ▶ Observe that for every non-empty subset $U \subseteq V_1$, then $|U| \leq |N(U)|$.

Let W be a non-empty subset of V_1 . Let H' be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H'.

Now we can define a function $f_W: V_2 \rightarrow V_1$ as following:

- 1. for $y \in V_2$ which is covered by edge $(x, y) \in M$, set $f_W(y) = x$;
- 2. for $y \in N(W)$ which is not covered by the matching M, set $f_W(y)$ to be an arbitrary vertex in $W \cap N(y)$.

3. for $y \in V_2 \setminus N(W)$, set $f_W(y)$ to be an arbitrary vertex in N(y). It is clear that $W = f_W(N(W))$.

"⇐":

- ▶ Define *H* to be the bipartite graph $H = (V_1, V_2, E_H)$ such that $V_1 = V_2 = V$ and $(u, v) \in E_H$ if there exists $e \in E$ such that t(e) = u and i(e) = v.
- ▶ Observe that for every non-empty subset $U \subseteq V_1$, then $|U| \leq |N(U)|$.

Let W be a non-empty subset of V_1 . Let H' be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H'.

Now we can define a function $f_W: V_2 \rightarrow V_1$ as following:

- 1. for $y \in V_2$ which is covered by edge $(x, y) \in M$, set $f_W(y) = x$;
- 2. for $y \in N(W)$ which is not covered by the matching M, set $f_W(y)$ to be an arbitrary vertex in $W \cap N(y)$.

3. for $y \in V_2 \setminus N(W)$, set $f_W(y)$ to be an arbitrary vertex in N(y). t is clear that $W = f_W(N(W))$.

"⇐":

- ▶ Define *H* to be the bipartite graph $H = (V_1, V_2, E_H)$ such that $V_1 = V_2 = V$ and $(u, v) \in E_H$ if there exists $e \in E$ such that t(e) = u and i(e) = v.
- ▶ Observe that for every non-empty subset $U \subseteq V_1$, then $|U| \leq |N(U)|$.

Let W be a non-empty subset of V_1 . Let H' be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H'.

Now we can define a function $f_W: V_2 \rightarrow V_1$ as following:

- 1. for $y \in V_2$ which is covered by edge $(x, y) \in M$, set $f_W(y) = x$;
- 2. for $y \in N(W)$ which is not covered by the matching M, set $f_W(y)$ to be an arbitrary vertex in $W \cap N(y)$.

3. for $y \in V_2 \setminus N(W)$, set $f_W(y)$ to be an arbitrary vertex in N(y). t is clear that $W = f_W(N(W))$.

"⇐":

- ▶ Define *H* to be the bipartite graph $H = (V_1, V_2, E_H)$ such that $V_1 = V_2 = V$ and $(u, v) \in E_H$ if there exists $e \in E$ such that t(e) = u and i(e) = v.
- ▶ Observe that for every non-empty subset $U \subseteq V_1$, then $|U| \leq |N(U)|$.

Let W be a non-empty subset of V_1 . Let H' be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H'.

Now we can define a function $f_W : V_2 \rightarrow V_1$ as following:

- 1. for $y \in V_2$ which is covered by edge $(x, y) \in M$, set $f_W(y) = x$;
- 2. for $y \in N(W)$ which is not covered by the matching M, set $f_W(y)$ to be an arbitrary vertex in $W \cap N(y)$.

3. for $y \in V_2 \setminus N(W)$, set $f_W(y)$ to be an arbitrary vertex in N(y). It is clear that $W = f_W(N(W))$.

"⇐":

- ▶ Define *H* to be the bipartite graph $H = (V_1, V_2, E_H)$ such that $V_1 = V_2 = V$ and $(u, v) \in E_H$ if there exists $e \in E$ such that t(e) = u and i(e) = v.
- ▶ Observe that for every non-empty subset $U \subseteq V_1$, then $|U| \leq |N(U)|$.

Let W be a non-empty subset of V_1 . Let H' be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H'.

Now we can define a function $f_W : V_2 \rightarrow V_1$ as following:

- 1. for $y \in V_2$ which is covered by edge $(x, y) \in M$, set $f_W(y) = x$;
- 2. for $y \in N(W)$ which is not covered by the matching M, set $f_W(y)$ to be an arbitrary vertex in $W \cap N(y)$.
- 3. for $y \in V_2 \setminus N(W)$, set $f_W(y)$ to be an arbitrary vertex in N(y).

It is clear that $W = f_W(N(W))$.

"⇐":

- ▶ Define *H* to be the bipartite graph $H = (V_1, V_2, E_H)$ such that $V_1 = V_2 = V$ and $(u, v) \in E_H$ if there exists $e \in E$ such that t(e) = u and i(e) = v.
- ▶ Observe that for every non-empty subset $U \subseteq V_1$, then $|U| \leq |N(U)|$.

Let W be a non-empty subset of V_1 . Let H' be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H'.

Now we can define a function $f_W: V_2 \rightarrow V_1$ as following:

- 1. for $y \in V_2$ which is covered by edge $(x, y) \in M$, set $f_W(y) = x$;
- 2. for $y \in N(W)$ which is not covered by the matching M, set $f_W(y)$ to be an arbitrary vertex in $W \cap N(y)$.

3. for $y \in V_2 \setminus N(W)$, set $f_W(y)$ to be an arbitrary vertex in N(y). It is clear that $W = f_W(N(W))$.

Now we construct a road coloring $\alpha : E \to \mathcal{P}(\Sigma)$, where $\Sigma = \mathcal{P}(V) \setminus \{\emptyset\}$ by setting

$$\alpha(e) = \{U : f_U(t(e)) = i(e), \emptyset \neq U \subseteq V\}.$$

Let $\mathcal{A} = (V, \Sigma, \delta) = \mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have $\delta(N_{-}(U), U) = U$.

- Let U_0 be an arbitrary non-empty subset of V, define $U_i = N_-(U_{i-1})$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_k = V$.
- ► Then $U_0 = \delta(V, U_{k-1}U_{k-2}\cdots U_1U_0)$ is reachable.
- \blacktriangleright Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

Now we construct a road coloring $\alpha : E \to \mathcal{P}(\Sigma)$, where $\Sigma = \mathcal{P}(V) \setminus \{\emptyset\}$ by setting

$$\alpha(e) = \{U : f_U(t(e)) = i(e), \emptyset \neq U \subseteq V\}.$$

Let $\mathcal{A} = (V, \Sigma, \delta) = \mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have $\delta(N_{-}(U), U) = U$.

- Let U_0 be an arbitrary non-empty subset of V, define $U_i = N_-(U_{i-1})$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_k = V$.
- ► Then $U_0 = \delta(V, U_{k-1}U_{k-2}\cdots U_1U_0)$ is reachable.
- \blacktriangleright Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

Now we construct a road coloring $\alpha : E \to \mathcal{P}(\Sigma)$, where $\Sigma = \mathcal{P}(V) \setminus \{\emptyset\}$ by setting

$$\alpha(e) = \{U : f_U(t(e)) = i(e), \emptyset \neq U \subseteq V\}.$$

Let $\mathcal{A} = (V, \Sigma, \delta) = \mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have $\delta(N_{-}(U), U) = U$.

- Let U₀ be an arbitrary non-empty subset of V, define U_i = N₋(U_{i-1}) for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_k = V$.
- ► Then $U_0 = \delta(V, U_{k-1}U_{k-2}\cdots U_1U_0)$ is reachable.
- \blacktriangleright Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

Now we construct a road coloring $\alpha : E \to \mathcal{P}(\Sigma)$, where $\Sigma = \mathcal{P}(V) \setminus \{\emptyset\}$ by setting

$$\alpha(e) = \{U : f_U(t(e)) = i(e), \emptyset \neq U \subseteq V\}.$$

Let $\mathcal{A} = (V, \Sigma, \delta) = \mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

 $\delta(N_-(U), U) = U.$

- Let U₀ be an arbitrary non-empty subset of V, define U_i = N₋(U_{i-1}) for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_k = V$.
- Then $U_0 = \delta(V, U_{k-1}U_{k-2}\cdots U_1U_0)$ is reachable.
- \blacktriangleright Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

Now we construct a road coloring $\alpha : E \to \mathcal{P}(\Sigma)$, where $\Sigma = \mathcal{P}(V) \setminus \{\emptyset\}$ by setting

$$\alpha(e) = \{U : f_U(t(e)) = i(e), \emptyset \neq U \subseteq V\}.$$

Let $\mathcal{A} = (V, \Sigma, \delta) = \mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

 $\delta(N_-(U), U) = U.$

- Let U₀ be an arbitrary non-empty subset of V, define U_i = N₋(U_{i-1}) for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_k = V$.
- Then $U_0 = \delta(V, U_{k-1}U_{k-2}\cdots U_1U_0)$ is reachable.

 \blacktriangleright Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

Now we construct a road coloring $\alpha : E \to \mathcal{P}(\Sigma)$, where $\Sigma = \mathcal{P}(V) \setminus \{\emptyset\}$ by setting

$$\alpha(e) = \{U : f_U(t(e)) = i(e), \emptyset \neq U \subseteq V\}.$$

Let $\mathcal{A} = (V, \Sigma, \delta) = \mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

 $\delta(N_-(U), U) = U.$

- Let U₀ be an arbitrary non-empty subset of V, define U_i = N₋(U_{i-1}) for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_k = V$.
- Then $U_0 = \delta(V, U_{k-1}U_{k-2}\cdots U_1U_0)$ is reachable.
- Hence A is completely reachable and G admits a completely reachable coloring.

Let $k \ge 2$ be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or not it admits a completely reachable with k colors is NP-complete.

- ▶ Let G = (V, E, i, t) be a digraph such that
 - 1. |V| is an odd prime number;
 - 2. for every vertex v, $d_+(v) = 2$;
 - 3. there exist vertices x and y such that $d_{-}(x) = 1$, $d_{-}(y) = 3$ and $d_{-}(z) = 2$, for each $z \in V \setminus \{x, y\}$.
- ▶ Then *G* admits a completely reachable coloring if and only if *G* has a hamitonian cycle (a directed cycle visits each vertex once).
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complete. (Our proof is obtained from the proof in Plesnik's paper² with some small modification.)

²J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two". In: *Inform. Process. Lett.* 8.4, pp. 199–201. ISSN: 0020-0190,1872-6119.

Let $k \ge 2$ be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or not it admits a completely reachable with k colors is NP-complete.

- ▶ Let G = (V, E, i, t) be a digraph such that
 - 1. |V| is an odd prime number;
 - 2. for every vertex v, $d_+(v) = 2$;
 - 3. there exist vertices x and y such that $d_{-}(x) = 1$, $d_{-}(y) = 3$ and $d_{-}(z) = 2$, for each $z \in V \setminus \{x, y\}$.
- ▶ Then *G* admits a completely reachable coloring if and only if *G* has a hamitonian cycle (a directed cycle visits each vertex once).
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complete. (Our proof is obtained from the proof in Plesnik's paper² with some small modification.)

²J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two". In: *Inform. Process. Lett.* 8.4, pp. 199–201. ISSN: 0020-0190,1872-6119.

Let $k \ge 2$ be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or not it admits a completely reachable with k colors is NP-complete.

- Let G = (V, E, i, t) be a digraph such that
 - 1. |V| is an odd prime number;
 - 2. for every vertex v, $d_+(v) = 2$;
 - 3. there exist vertices x and y such that $d_{-}(x) = 1$, $d_{-}(y) = 3$ and $d_{-}(z) = 2$, for each $z \in V \setminus \{x, y\}$.
- ▶ Then *G* admits a completely reachable coloring if and only if *G* has a hamitonian cycle (a directed cycle visits each vertex once).
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complete. (Our proof is obtained from the proof in Plesnik's paper² with some small modification.)

²J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two". In: *Inform. Process. Lett.* 8.4, pp. 199–201. ISSN: 0020-0190,1872-6119.

Let $k \ge 2$ be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or not it admits a completely reachable with k colors is NP-complete.

- Let G = (V, E, i, t) be a digraph such that
 - 1. |V| is an odd prime number;
 - 2. for every vertex v, $d_+(v) = 2$;
 - 3. there exist vertices x and y such that $d_{-}(x) = 1$, $d_{-}(y) = 3$ and $d_{-}(z) = 2$, for each $z \in V \setminus \{x, y\}$.
- ▶ Then *G* admits a completely reachable coloring if and only if *G* has a hamitonian cycle (a directed cycle visits each vertex once).
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complete. (Our proof is obtained from the proof in Plesnik's paper² with some small modification.)

²J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two". In: *Inform. Process. Lett.* 8.4, pp. 199–201. ISSN: 0020-0190,1872-6119.

Let $k \ge 2$ be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or not it admits a completely reachable with k colors is NP-complete.

- Let G = (V, E, i, t) be a digraph such that
 - 1. |V| is an odd prime number;
 - 2. for every vertex v, $d_+(v) = 2$;
 - 3. there exist vertices x and y such that $d_{-}(x) = 1$, $d_{-}(y) = 3$ and $d_{-}(z) = 2$, for each $z \in V \setminus \{x, y\}$.
- ▶ Then *G* admits a completely reachable coloring if and only if *G* has a hamitonian cycle (a directed cycle visits each vertex once).
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complete. (Our proof is obtained from the proof in Plesnik's paper² with some small modification.)

²J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two". In: *Inform. Process. Lett.* 8.4, pp. 199–201. ISSN: 0020-0190,1872-6119.

Plesnik's Reduction

- Reduce from the 3-SAT problem.
- Construct a digraph G for a given boolean formula F. Vertices of G have in-degree and out-degree at most 2.
- \triangleright G has a hamitonian cycle if and only if F is satisfiable.
- The following figure is the digraph corresponding to

 $F = (x_1 \vee \overline{x_2}) \land (\overline{x_1} \vee x_2 \vee x_3) \land (\overline{x_2} \vee \overline{x_3}).$

Open problems

Let $f : \mathbb{N} \to \mathbb{N}$.

- 1. For a given digarph G with n vertices, is there a polynomial-time algorithm to determine whether G admits a completely reachable coloring which uses f(n) colors?
- 2. For a given digraph G which admits a completely reachable coloring, can we find one completely reachable coloring in polynomial time?

Thank you

Open problems

Let $f : \mathbb{N} \to \mathbb{N}$.

- 1. For a given digarph G with n vertices, is there a polynomial-time algorithm to determine whether G admits a completely reachable coloring which uses f(n) colors?
- 2. For a given digraph G which admits a completely reachable coloring, can we find one completely reachable coloring in polynomial time?

Thank you