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Deterministic finite automata

A deterministic finite automaton (DFA) is a triple A = (Q, X, ) where
> Q@ is a finite set, called the state set;
> Y is a finite set, called the input alphabet;
> §:Q x X — Q@ isamap, called the transition function.
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extends to a function Q x X* — Q (still denoted by §) via the following recursion: For
every g € Q, we set

o(q,€) =q
d(q, wa) = (d(q, w), a)

forallwe ¥*and ae X.

To simplify the notation, we often write g.w for 6(q, w) and P.w for
{6(q,w) : g € P}, where P C Q.
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Completely reachable automata

Let A= (Q,X,0) be a DFA.
> A non-empty subset P C Q@ is reachable in A if P = Q.w for some word w € L*.
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Completely reachable automata

Let A= (Q,X,0) be a DFA.
> A non-empty subset P C Q@ is reachable in A if P = Q.w for some word w € L*.
> A DFA is completely reachable if every non-empty subset of its states is reachable.

» A DFA is synchronizing if there exists a reachable singleton set {x} C Q.
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Digraph

A digraph is a quadruple G = (V, E, i, t) where V, E are non-empty sets and
it:E— V.
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Digraph

A digraph is a quadruple G = (V, E, i, t) where V, E are non-empty sets and
it E— V.

» The elements in V are called vertices;

> the elements of E are called edges;
for an edge e € E,

> the vertex i(e) is called the initial vertex of e;

» the vertex t(e) is called the terminal vertex of e.
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Neighbours and degrees

Let v be a vertex in a digraph G.
» The out-neighbour of v is the set {i(e) : t(e) = v,e € E}, denoted N4 (v).
» The in-neighbour of v is the set {t(e) : i(e) = v, e € E}, denoted N_(v).
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Let v be a vertex in a digraph G.
» The out-neighbour of v is the set {i(e) : t(e) = v,e € E}, denoted N4 (v).
» The in-neighbour of v is the set {t(e) : i(e) = v, e € E}, denoted N_(v).
» For a subset U € V,

» write N (U) for the set {u: Ny (v),u € U};
> write N_(U) for the set {u: N_(u),u € U}.

» The out-degree of v is the number of edges whose initial vertex is v, denoted
C|+(V).
» The in-degree of v is the number of edges whose terminal vertex is v, denoted

d_(v).
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Road colorings

For a set X, write P(X) for the power set of X.
A road coloring of a finite digraph G = (V, E, i, t) is a function o : E — P(X) \ {0}
such that for every vertex v € V, the family of sets

{a(e): t(e) =v,ec E}

forms a partition of X.
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Example

x 0 1 2 3

() xa 1 2 3 0
° xb 01 2 0
adigraph a digraph with a road coloring an automaton
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Automata from road colorings

Let «: E — P(X) \ {0} be a road coloring of G.
Define A(G, «) to the automaton (V, X, ) such that for every v € V and a € ¥,

v.a = t(e)

where e is the edge such that i(e) = v and a € a(e).
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Road coloring problem

Problem

For a given digraph G, how to determine whether or not G admits a road coloring such
that the correponding automaton fulfills some properties (i.e., synchronizing,
completerly reachable, ...)7
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Trahtman's Road Coloring Theorem

» The period of a strongly connected digraph G is the greatest common divisor of
the lengths of its cycles, denoted p(G).

» A digraph is called aperiodic if its period equals 1.
Theorem (Trahtman?, 2009)

Let G =(V,E,i,t) be a strongly connected digraph and d = max{dy(v),v € V}.
The following are equivalent.

1. The digraph G admits a synchronizing coloring.

2. The digraph G admits a synchronizing coloring with d colors.
3. The digraph G is aperiodic.

YA, N. Trahtman (2009). “The road coloring problem”. In: Israel J. Math. 172, pp. 51-60. 155N
0021-2172,1565-8511.
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Completely reachable colorings

Theorem (Z., 2023+)
A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U C V,

Ul < IN-(U)].
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Completely reachable colorings

Theorem (Z., 2023+)
A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U C V,

Ul < IN-(U)].

Theorem (Z., 2023+)

Let k > 2 be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or
not it admits a completely reachable with k colors is NP-complete.
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Cyclic Decomposition Theorem

Theorem (Cyclic Decomposition Theorem)

Let G be a strongly connected digraph of period p. The vertex set can be partition into
p sets {C; : i € Zp} such that Ny (C;) = Ciyq for every i € Zp.
Moreover, for each vertex v € C; for some j, there exists a positive integer k such that

NK(v) = N_(---N_(v)) = G,
k
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Hall's Marriage Theorem

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and
ECXXxY.
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Hall's Marriage Theorem

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and
ECXXxY.

The elements in X U Y are vertices and the elements in E are edges. A X-perfect
matching of H is a matching, a set of disjoint edges, which covers every vertex in X.
For U C X, the neighborhood of U is the set {w : (u,w) € E,u € U}, denoted N(U).
Theorem (Hall's Marriage Theorem)

Let H= (X, Y, E) be a bipartite graph. There exists an X-perfect matching if and only
if for every subset U C X, we have |U| < N(U).
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The proof

Theorem (Z., 2023+)
A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U C V,

U| < |N_(U)|. (Hall's condition)
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The proof
“j”:
> Let o be a completely reachable coloring of G and its color set is . The

corresponding autoaton is A(G,a) = (V, X, ).
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The proof

=

> Let o be a completely reachable coloring of G and its color set is . The

>

corresponding autoaton is A(G,a) = (V, X, ).

For every two vertices u, v, by completely reachability, there exists a word w such
that V.w = {u} and then 6(v, w) = u. Then there exists a walk in G from v to u.
This implies that G is strongly connected

By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets
{Ci :i € Zp} such that N (C;) = Cjy1 for every i € Zp,.

Then for any word w € ¥* and i € Zp, V.w N C; # 0. Since every singleton set is
reachable. we have p = 1 and then G is aperiodic.

For a non-empty subset U C V/, take a word w = w’a € X* such that V.w = U.
Let W be the set V.w'. Then

Ul < [W] < [N_(U)].
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The proof, cont'd

="

» Define H to be the bipartite graph H = (V4, Va2, Ey) such that V4 = V, = V and
(u,v) € Ep if there exists e € E such that t(e) = v and i(e) = v.

» Observe that for every non-empty subset U C V4, then |U| < [N(U)].
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2. for y € N(W) which is not covered by the matching M, set fy(y) to be an
arbitrary vertex in W N N(y).

14 /18



The proof, cont'd

="

» Define H to be the bipartite graph H = (V4, Va2, Ey) such that V4 = V, = V and
(u,v) € Ep if there exists e € E such that t(e) = v and i(e) = v.

» Observe that for every non-empty subset U C V4, then |U| < [N(U)].

Let W be a non-empty subset of V. Let H' be the induced subgraph of H on
W U N(W). By the Hall's Marriage Theorem, there exists a W-perfect matching M in
H'.
Now we can define a function fiy : Vo — V4 as following:
1. for y € V, which is covered by edge (x,y) € M, set fyw(y) = x;

2. for y € N(W) which is not covered by the matching M, set fy(y) to be an
arbitrary vertex in W N N(y).

3. fory € Vo \ N(W), set fyy(y) to be an arbitrary vertex in N(y).

14 /18



The proof, cont'd

="

» Define H to be the bipartite graph H = (V4, Va2, Ey) such that V4 = V, = V and
(u,v) € Ep if there exists e € E such that t(e) = v and i(e) = v.

» Observe that for every non-empty subset U C V4, then |U| < [N(U)].

Let W be a non-empty subset of V. Let H' be the induced subgraph of H on
W U N(W). By the Hall's Marriage Theorem, there exists a W-perfect matching M in
H'.
Now we can define a function fiy : Vo — V4 as following:
1. for y € V, which is covered by edge (x,y) € M, set fyw(y) = x;

2. for y € N(W) which is not covered by the matching M, set fy(y) to be an
arbitrary vertex in W N N(y).

3. fory € Vo \ N(W), set fyy(y) to be an arbitrary vertex in N(y).
It is clear that W = fiy (N(W)).
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The proof, cont'd
Now we construct a road coloring o : E — P(X), where X = P(V) \ {0} by setting

ale) = {U: fu(t(e) = i(e),0 # U C V}.
Let A= (V,%,8) = A(G,a).
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Let A= (V,X,d) = A(G, ). Note that for every non-empty subset U, we have

S(N_(U), U) = U.

» Let Uy be an arbitrary non-empty subset of V, define U; = N_(U;_1) for all
positive integer i.

» Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uy = V.

» Then Uy = 0(V, Ux_1Ux_2--- U1 Up) is reachable.

» Hence A is completely reachable and G admits a completely reachable coloring.
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Theorem (Z., 2023+)

Let k > 2 be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or
not it admits a completely reachable with k colors is NP-complete.
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Theorem (Z., 2023+)

Let k > 2 be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or
not it admits a completely reachable with k colors is NP-complete.

Proof for k = 2:
» Let G =(V,E,i,t) be a digraph such that
1. |V]is an odd prime number;
2. for every vertex v, d(v) = 2;
3. there exist vertices x and y such that d_(x) =1, d_(y) =3 and d_(z) = 2, for
each ze V\ {x,y}.
» Then G admits a completely reachable coloring if and only if G has a hamitonian
cycle (a directed cycle visits each vertex once).
» To determine whether or not such a given graph G has a hamitonian cycle is
NP-complelte. (Our proof is obtained from the proof in Plesnik’s paper? with some
small modification.)

2J. Plesnik (1979). “The NP-completeness of the Hamiltonian cycle problem in planar digraphs

with degree bound two". In: Inform. Process. Lett. 8.4, pp. 199-201. 1ssn: 0020-0190,1872-6119.
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Plesnik's Reduction

» Reduce from the 3-SAT problem.

» Construct a digraph G for a given boolean formula F. Vertices of G have
in-degree and out-degree at most 2.

» G has a hamitonian cycle if and only if F is satisfiable.

» The following figure is the digraph corresponding to
F=(aVx)AGIVxVx)A(aVx3).
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Open problems

Let f : N — N.

1. For a given digarph G with n vertices, is there a polynomial-time algorithm to
determine whether G admits a completely reachable coloring which uses f(n)
colors?

2. For a given digraph G which admits a completely reachable coloring, can we find
one completely reachable coloring in polynomial time?
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determine whether G admits a completely reachable coloring which uses f(n)
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one completely reachable coloring in polynomial time?

Thank you
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