Road coloring problem for completely reachability

Yinfeng Zhu
Ural Federal University

International (55th All-Russian) Youth School-Conference
February 3, 2024

Deterministic finite automata

A deterministic finite automaton (DFA) is a triple $\mathcal{A}=(Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.
Σ^{*} stands for the set of all words over Σ including the empty word ϵ. The function δ extends to a function $Q \times \Sigma^{*} \rightarrow Q$ (still denoted by δ) via the following recursion: For every $q \in Q$, we set

$$
\begin{array}{r}
\delta(q, \epsilon)=q \\
\delta(q, w a)=\delta(\delta(q, w), a)
\end{array}
$$

for all $w \in \Sigma^{*}$ and $a \in \Sigma$.
To simplify the notation, we often write $q . w$ for $\delta(q, w)$ and P.w for
$\{\delta(q, w): q \in P\}$, where $P \subseteq Q$.

Deterministic finite automata

A deterministic finite automaton (DFA) is a triple $\mathcal{A}=(Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.
Σ^{*} stands for the set of all words over Σ including the empty word ϵ. The function δ extends to a function $Q \times \Sigma^{*} \rightarrow Q$ (still denoted by δ) via the following recursion: For every $q \in Q$, we set

$$
\begin{array}{r}
\delta(q, \epsilon)=q \\
\delta(q, w a)=\delta(\delta(q, w), a)
\end{array}
$$

for all $w \in \Sigma^{*}$ and $a \in \Sigma$.
To simplify the notation, we often write $q . w$ for $\delta(q, w)$ and P.w for $\{\delta(q, w): q \in P\}$, where $P \subseteq Q$.

Deterministic finite automata

A deterministic finite automaton (DFA) is a triple $\mathcal{A}=(Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.
Σ^{*} stands for the set of all words over Σ including the empty word ϵ. The function δ extends to a function $Q \times \Sigma^{*} \rightarrow Q$ (still denoted by δ) via the following recursion: For every $q \in Q$, we set

$$
\begin{array}{r}
\delta(q, \epsilon)=q \\
\delta(q, w a)=\delta(\delta(q, w), a)
\end{array}
$$

for all $w \in \Sigma^{*}$ and $a \in \Sigma$.
To simplify the notation, we often write $q . w$ for $\delta(q, w)$ and $P . w$ for $\{\delta(q, w): q \in P\}$, where $P \subseteq Q$.

Completely reachable automata

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be a DFA.

- A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if $P=Q . w$ for some word $w \in \Sigma^{*}$.
- A DFA is completely reachable if every non-empty subset of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Completely reachable automata

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be a DFA.

- A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if $P=Q . w$ for some word $w \in \Sigma^{*}$.
- A DFA is completely reachable if every non-empty subset of its states is reachable.
\Rightarrow A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Completely reachable automata

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be a DFA.

- A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if $P=Q . w$ for some word $w \in \Sigma^{*}$.
- A DFA is completely reachable if every non-empty subset of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Digraph

A digraph is a quadruple $G=(V, E, i, t)$ where V, E are non-empty sets and $i, t: E \rightarrow V$.

- The elements in V are called vertices;
- the elements of E are called edges;
for an edge $e \in E$,
- the vertex $i(e)$ is called the initial vertex of e;
- the vertex $t(e)$ is called the terminal vertex of e

Digraph

A digraph is a quadruple $G=(V, E, i, t)$ where V, E are non-empty sets and $i, t: E \rightarrow V$.

- The elements in V are called vertices;
- the elements of E are called edges;
for an edge $e \in E$,
- the vertex $i(e)$ is called the initial vertex of e;
- the vertex $t(e)$ is called the terminal vertex of e.

Neighbours and degrees

Let v be a vertex in a digraph G.

- The out-neighbour of v is the set $\{i(e): t(e)=v, e \in E\}$, denoted $N_{+}(v)$.
- The in-neighbour of v is the set $\{t(e): i(e)=v, e \in E\}$, denoted $N_{-}(v)$.
\rightarrow For a subset $U \in V$,
- write $N_{+}(U)$ for the set $\left\{u: N_{+}(u), u \in U\right\}$;
D. The out-degree of v is the number of edges whose initial vertex is v, denoted

The in-degree of v is the number of edges whose terminal vertex is v, denoted $d_{-}(v)$.

Neighbours and degrees

Let v be a vertex in a digraph G.

- The out-neighbour of v is the set $\{i(e): t(e)=v, e \in E\}$, denoted $N_{+}(v)$.
- The in-neighbour of v is the set $\{t(e): i(e)=v, e \in E\}$, denoted $N_{-}(v)$.
- For a subset $U \in V$,
- write $N_{+}(U)$ for the set $\left\{u: N_{+}(u), u \in U\right\}$;
- write $N_{-}(U)$ for the set $\left\{u: N_{-}(u), u \in U\right\}$.
\Rightarrow The out-degree of v is the number of edges whose initial vertex is v, denoted

The in-degree of v is the number of edges whose terminal vertex is v, denoted d_(v).

Neighbours and degrees

Let v be a vertex in a digraph G.

- The out-neighbour of v is the set $\{i(e): t(e)=v, e \in E\}$, denoted $N_{+}(v)$.
- The in-neighbour of v is the set $\{t(e): i(e)=v, e \in E\}$, denoted $N_{-}(v)$.
- For a subset $U \in V$,
- write $N_{+}(U)$ for the set $\left\{u: N_{+}(u), u \in U\right\}$;
- write $N_{-}(U)$ for the set $\left\{u: N_{-}(u), u \in U\right\}$.
- The out-degree of v is the number of edges whose initial vertex is v, denoted $d_{+}(v)$.
- The in-degree of v is the number of edges whose terminal vertex is v, denoted $d_{-}(v)$.

Road colorings

For a set X, write $\mathcal{P}(X)$ for the power set of X.
A road coloring of a finite digraph $G=(V, E, i, t)$ is a function $\alpha: E \rightarrow \mathcal{P}(\Sigma) \backslash\{\emptyset\}$ such that for every vertex $v \in V$, the family of sets

$$
\{\alpha(e): t(e)=v, e \in E\}
$$

forms a partition of Σ.

Example

Automata from road colorings

Let $\alpha: E \rightarrow \mathcal{P}(\Sigma) \backslash\{\emptyset\}$ be a road coloring of G. Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$
v \cdot a=t(e)
$$

where e is the edge such that $i(e)=v$ and $a \in \alpha(e)$.
The road coloring α

- is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automaton;
- is called a completely reachable coloring if $\mathcal{A}(G, \alpha)$ is a completely reachable automaton.

Automata from road colorings

Let $\alpha: E \rightarrow \mathcal{P}(\Sigma) \backslash\{\emptyset\}$ be a road coloring of G.
Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$
v \cdot a=t(e)
$$

where e is the edge such that $i(e)=v$ and $a \in \alpha(e)$.
The road coloring α

- is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automaton;
- is called a completely reachable coloring if $\mathcal{A}(G, \alpha)$ is a completely reachable automaton.

Automata from road colorings

Let $\alpha: E \rightarrow \mathcal{P}(\Sigma) \backslash\{\emptyset\}$ be a road coloring of G.
Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$
v \cdot a=t(e)
$$

where e is the edge such that $i(e)=v$ and $a \in \alpha(e)$.
The road coloring α

- is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automaton;
- is called a completely reachable coloring if $\mathcal{A}(G, \alpha)$ is a completely reachable automaton.

Road coloring problem

Problem

For a given digraph G, how to determine whether or not G admits a road coloring such that the correponding automaton fulfills some properties (i.e., synchronizing, completerly reachable, ...)?

Trahtman's Road Coloring Theorem

- The period of a strongly connected digraph G is the greatest common divisor of the lengths of its cycles, denoted $p(G)$.
- A digraph is called aperiodic if its period equals 1 .

Theorem (Trahtman ${ }^{1}$, 2009)
Let $G=(V, E, i, t)$ be a strongly connected digraph and $d=\max \left\{\mathrm{d}_{+}(v), v \in V\right\}$.
The following are equivalent.

1. The digraph G admits a synchronizing coloring.
2. The digraph G admits a synchronizing coloring with d colors.
3. The digraph G is aperiodic.
[^0]
Completely reachable colorings

Theorem (Z., 2023+)
A digraph $G=(V, E, i, t)$ admits a completely reachable coloring if and only if

1. G is strongly connected,
2. G is aperiodic,
3. for every subset $U \subseteq V,|U| \leq\left|N_{-}(U)\right|$.

Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.

Completely reachable colorings

Theorem (Z., 2023+)

A digraph $G=(V, E, i, t)$ admits a completely reachable coloring if and only if

1. G is strongly connected,
2. G is aperiodic,
3. for every subset $U \subseteq V,|U| \leq\left|N_{-}(U)\right|$.

Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.

Cyclic Decomposition Theorem

Theorem (Cyclic Decomposition Theorem)

Let G be a strongly connected digraph of period p. The vertex set can be partition into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
Moreover, for each vertex $v \in C_{j}$ for some j, there exists a positive integer k such that

$$
N_{-}^{k}(v)=\underbrace{N_{-}\left(\cdots N_{-}\right.}_{k}(v))=C_{j} .
$$

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. $A X$-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X For $U \subseteq X$, the neighborhood of U is the set $\{w:(u, w) \in E, u \in U\}$, denoted $N(U)$,

Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X.

Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w:(u, w) \in E, u \in U\}$, denoted $N(U)$.

Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w:(u, w) \in E, u \in U\}$, denoted $N(U)$.

Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

The proof

Theorem (Z., 2023+)
A digraph $G=(V, E, i, t)$ admits a completely reachable coloring if and only if

1. G is strongly connected,
2. G is aperiodic,
3. for every subset $U \subseteq V,|U| \leq\left|N_{-}(U)\right|$. (Hall's condition)

The proof

" \Rightarrow ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
\rightarrow For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u. This implies that G is strongly connected
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
\rightarrow Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$ and then G is aperiodic.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$. Let W be the set $V . w^{\prime}$. Then

The proof

 $" \Rightarrow$ ":- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u. This implies that G is strongly connected
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
- Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$ and then G is aperiodic.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V \cdot w=U$ Let W be the set $V . w^{\prime}$. Then

The proof

 $" \Rightarrow$ ":- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u. This implies that G is strongly connected
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
\rightarrow Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$ and then G is aperiodic.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$. Let W be the set $V . w^{\prime}$. Then

The proof

$" \Rightarrow$ ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u. This implies that G is strongly connected
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
- Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$ and then G is aperiodic.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$. Let W be the set $V . w^{\prime}$. Then

The proof

$" \Rightarrow$ ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u. This implies that G is strongly connected
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
- Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$ and then G is aperiodic.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$. Let W be the set $V . w^{\prime}$. Then

$$
|U| \leq|W| \leq\left|N_{-}(U)\right|
$$

The proof, cont'd

$$
" \Leftarrow ":
$$

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $t(e)=u$ and $i(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on

 $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following.

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$

It is clear that $W=f_{W}(N(W))$

The proof, cont'd

$$
" \Leftarrow ":
$$

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $t(e)=u$ and $i(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in

```
Now we can define a function fW: V
    1. for }y\in\mp@subsup{V}{2}{}\mathrm{ which is covered by edge ( }x,y)\inM\mathrm{ set fiN (y)=x;
    2. for }y\inN(W)\mathrm{ which is not covered by the matching }M\mathrm{ , set }\mp@subsup{f}{W}{}(y)\mathrm{ to be an
    arbitrary vertex in W \capN(y).
    3. for }y\in1/2\N(M/)\mathrm{ , set fw(y) to be an arbitrary vertex in N(y)
It is clear that W = fW (N(W)).
```


The proof, cont'd

$$
" \Leftarrow ":
$$

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $t(e)=u$ and $i(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$.

It is clear that $W=f_{W}(N(W))$.

The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $t(e)=u$ and $i(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(M /)$ set $f_{M}(y)$ to be an arbitrary vertex in $N(y)$

It is clear that $W=f_{W}(N(W))$.

The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $t(e)=u$ and $i(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$ It is clear that $W=f_{W}(N(W))$

The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $t(e)=u$ and $i(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$.
[^1]
The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $t(e)=u$ and $i(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$.

It is clear that $W=f_{W}(N(W))$.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\} .
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$ is reachable.
- Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
\Rightarrow Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.

- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$ is reachable.
- Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
\Rightarrow Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$ is reachable.
- Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
\Rightarrow Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$ is reachable.
- Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$ is reachable.
\rightarrow Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$ is reachable.
- Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d(v)=2$;
3. there exist vertices x and y such that $d_{-}(x)=1, d_{-}(y)=3$ and $d_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle (a directed cycle visits each vertex once)
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in Plesnik's paper ${ }^{2}$ with some small modification.)

[^2]Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:
\Rightarrow Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertices x and y such that $d_{-}(x)=1, d_{-}(y)=3$ and $d_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle (a directed cycle visits each vertex once)
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in Plesnik's paper ${ }^{2}$ with some small modification.)

[^3]Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertices x and y such that $\mathrm{d}_{-}(x)=1, \mathrm{~d}_{-}(y)=3$ and $\mathrm{d}_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle (a directed cycle visits each vertex once)
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in Plesnik's paper ${ }^{2}$ with some small modification.)

[^4]
Theorem (Z., 2023+)

Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertices x and y such that $\mathrm{d}_{-}(x)=1, \mathrm{~d}_{-}(y)=3$ and $\mathrm{d}_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle (a directed cycle visits each vertex once).
\rightarrow To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in Plesnik's paper ${ }^{2}$ with some small modification.)

[^5]
Theorem (Z., 2023+)

Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertices x and y such that $\mathrm{d}_{-}(x)=1, \mathrm{~d}_{-}(y)=3$ and $\mathrm{d}_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle (a directed cycle visits each vertex once).
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in Plesnik's paper ${ }^{2}$ with some small modification.)

[^6]
Plesnik's Reduction

- Reduce from the 3-SAT problem.
- Construct a digraph G for a given boolean formula F. Vertices of G have in-degree and out-degree at most 2.
- G has a hamitonian cycle if and only if F is satisfiable.
- The following figure is the digraph corresponding to

$$
F=\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) .
$$

Open problems

Let $f: \mathbb{N} \rightarrow \mathbb{N}$.

1. For a given digarph G with n vertices, is there a polynomial-time algorithm to determine whether G admits a completely reachable coloring which uses $f(n)$ colors?
2. For a given digraph G which admits a completely reachable coloring, can we find one completely reachable coloring in polynomial time?

Open problems

Let $f: \mathbb{N} \rightarrow \mathbb{N}$.

1. For a given digarph G with n vertices, is there a polynomial-time algorithm to determine whether G admits a completely reachable coloring which uses $f(n)$ colors?
2. For a given digraph G which admits a completely reachable coloring, can we find one completely reachable coloring in polynomial time?

Thank you

[^0]: ${ }^{1}$ A. N. Trahtman (2009). "The road coloring problem". In: Israel J. Math. 172, pp. 51-60. ISSN: 0021-2172,1565-8511.

[^1]: It is clear that $W=f_{W}(N(W))$

[^2]: ${ }^{2}$ J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs
 with degree bound two'

[^3]: The NP-completeness of the Hamiltonian cycle problem in planar digraphs
 with degree bound two'

[^4]: with degree bound two'

[^5]: with degree bound two"

[^6]: ${ }^{2}$ J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two". In: Inform. Process. Lett. 8.4, pp. 199-201. ISSN: 0020-0190,1872-6119.

