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Deterministic finite automata

A deterministic finite automaton (DFA) is a triple A = (Q,Σ, δ) where
I Q is a finite set, called the state set;
I Σ is a finite set, called the input alphabet;
I δ : Q × Σ→ Q is a map, called the transition function.

Σ∗ stands for the set of all words over Σ including the empty word ε. The function δ
extends to a function Q × Σ∗ → Q (still denoted by δ) via the following recursion: For
every q ∈ Q, we set

δ(q, ε) = q

δ(q,wa) = δ(δ(q,w), a)

for all w ∈ Σ∗ and a ∈ Σ.
To simplify the notation, we often write q.w for δ(q,w) and P.w for
{δ(q,w) : q ∈ P}, where P ⊆ Q.
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Completely reachable automata

Let A = (Q,Σ, δ) be a DFA.
I A non-empty subset P ⊆ Q is reachable in A if P = Q.w for some word w ∈ Σ∗.
I A DFA is completely reachable if every non-empty subset of its states is reachable.
I A DFA is synchronizing if there exists a reachable singleton set {x} ⊆ Q.
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Digraph

A digraph is a quadruple G = (V ,E , i , t) where V ,E are non-empty sets and
i , t : E → V .
I The elements in V are called vertices;
I the elements of E are called edges;

for an edge e ∈ E ,
I the vertex i(e) is called the initial vertex of e;
I the vertex t(e) is called the terminal vertex of e.
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Neighbours and degrees

Let v be a vertex in a digraph G .
I The out-neighbour of v is the set {i(e) : t(e) = v , e ∈ E}, denoted N+(v).
I The in-neighbour of v is the set {t(e) : i(e) = v , e ∈ E}, denoted N−(v).
I For a subset U ∈ V ,

I write N+(U) for the set {u : N+(u), u ∈ U};
I write N−(U) for the set {u : N−(u), u ∈ U}.

I The out-degree of v is the number of edges whose initial vertex is v , denoted
d+(v).

I The in-degree of v is the number of edges whose terminal vertex is v , denoted
d−(v).
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Road colorings

For a set X , write P(X ) for the power set of X .

A road coloring of a finite digraph G = (V ,E , i , t) is a function α : E → P(Σ) \ {∅}
such that for every vertex v ∈ V , the family of sets

{α(e) : t(e) = v , e ∈ E}

forms a partition of Σ.
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Example

6 / 18



Automata from road colorings

Let α : E → P(Σ) \ {∅} be a road coloring of G .
Define A(G , α) to the automaton (V ,Σ, δ) such that for every v ∈ V and a ∈ Σ,

v .a = t(e)

where e is the edge such that i(e) = v and a ∈ α(e).
The road coloring α
I is called a sychronizing coloring if A(G , α) is a synchronizing automaton;
I is called a completely reachable coloring if A(G , α) is a completely reachable

automaton.
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Road coloring problem

Problem
For a given digraph G , how to determine whether or not G admits a road coloring such
that the correponding automaton fulfills some properties (i.e., synchronizing,
completerly reachable, ...)?
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Trahtman’s Road Coloring Theorem

I The period of a strongly connected digraph G is the greatest common divisor of
the lengths of its cycles, denoted p(G ).

I A digraph is called aperiodic if its period equals 1.

Theorem (Trahtman1, 2009)
Let G = (V ,E , i , t) be a strongly connected digraph and d = max{d+(v), v ∈ V }.
The following are equivalent.
1. The digraph G admits a synchronizing coloring.
2. The digraph G admits a synchronizing coloring with d colors.
3. The digraph G is aperiodic.

1A. N. Trahtman (2009). “The road coloring problem”. In: Israel J. Math. 172, pp. 51–60. issn:
0021-2172,1565-8511.
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Completely reachable colorings

Theorem (Z., 2023+)
A digraph G = (V ,E , i , t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U ⊆ V , |U| ≤ |N−(U)|.

Theorem (Z., 2023+)
Let k ≥ 2 be a fixed integer. To determine a given digraph G = (V ,E , i , t) whether or
not it admits a completely reachable with k colors is NP-complete.
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Cyclic Decomposition Theorem

Theorem (Cyclic Decomposition Theorem)
Let G be a strongly connected digraph of period p. The vertex set can be partition into
p sets {Ci : i ∈ Zp} such that N+(Ci ) = Ci+1 for every i ∈ Zp.
Moreover, for each vertex v ∈ Cj for some j , there exists a positive integer k such that

Nk
−(v) = N−(· · ·N−(︸ ︷︷ ︸

k

v)) = Cj .
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Hall’s Marriage Theorem

A bipartite graph H = (X ,Y ,E ) is a triple, where X ,Y are two nonempty sets and
E ⊆ X × Y .
The elements in X ∪ Y are vertices and the elements in E are edges. A X -perfect
matching of H is a matching, a set of disjoint edges, which covers every vertex in X .
For U ⊆ X , the neighborhood of U is the set {w : (u,w) ∈ E , u ∈ U}, denoted N(U).

Theorem (Hall’s Marriage Theorem)
Let H = (X ,Y ,E ) be a bipartite graph. There exists an X -perfect matching if and only
if for every subset U ⊆ X , we have |U| ≤ N(U).
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The proof

Theorem (Z., 2023+)
A digraph G = (V ,E , i , t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U ⊆ V , |U| ≤ |N−(U)|. (Hall’s condition)
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The proof
“⇒”:
I Let α be a completely reachable coloring of G and its color set is Σ. The

corresponding autoaton is A(G , α) = (V ,Σ, δ).
I For every two vertices u, v , by completely reachability, there exists a word w such

that V .w = {u} and then δ(v ,w) = u. Then there exists a walk in G from v to u.
This implies that G is strongly connected

I By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets
{Ci : i ∈ Zp} such that N+(Ci ) = Ci+1 for every i ∈ Zp.

I Then for any word w ∈ Σ∗ and i ∈ Zp, V .w ∩ Ci 6= ∅. Since every singleton set is
reachable. we have p = 1 and then G is aperiodic.

I For a non-empty subset U ⊆ V , take a word w = w ′a ∈ Σ∗ such that V .w = U.
Let W be the set V .w ′. Then

|U| ≤ |W | ≤ |N−(U)|.
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The proof, cont’d

“⇐”:
I Define H to be the bipartite graph H = (V1,V2,EH) such that V1 = V2 = V and

(u, v) ∈ EH if there exists e ∈ E such that t(e) = u and i(e) = v .
I Observe that for every non-empty subset U ⊆ V1, then |U| ≤ |N(U)|.

Let W be a non-empty subset of V1. Let H ′ be the induced subgraph of H on
W ∪ N(W ). By the Hall’s Marriage Theorem, there exists a W -perfect matching M in
H ′.
Now we can define a function fW : V2 → V1 as following:
1. for y ∈ V2 which is covered by edge (x , y) ∈ M, set fW (y) = x ;
2. for y ∈ N(W ) which is not covered by the matching M, set fW (y) to be an

arbitrary vertex in W ∩ N(y).
3. for y ∈ V2 \ N(W ), set fW (y) to be an arbitrary vertex in N(y).

It is clear that W = fW (N(W )).
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The proof, cont’d
Now we construct a road coloring α : E → P(Σ), where Σ = P(V ) \ {∅} by setting

α(e) = {U : fU(t(e)) = i(e), ∅ 6= U ⊆ V }.

Let A = (V ,Σ, δ) = A(G , α). Note that for every non-empty subset U, we have

δ(N−(U),U) = U.

I Let U0 be an arbitrary non-empty subset of V , define Ui = N−(Ui−1) for all
positive integer i .

I Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uk = V .

I Then U0 = δ(V ,Uk−1Uk−2 · · ·U1U0) is reachable.
I Hence A is completely reachable and G admits a completely reachable coloring.

15 / 18



The proof, cont’d
Now we construct a road coloring α : E → P(Σ), where Σ = P(V ) \ {∅} by setting

α(e) = {U : fU(t(e)) = i(e), ∅ 6= U ⊆ V }.

Let A = (V ,Σ, δ) = A(G , α). Note that for every non-empty subset U, we have

δ(N−(U),U) = U.

I Let U0 be an arbitrary non-empty subset of V , define Ui = N−(Ui−1) for all
positive integer i .

I Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uk = V .

I Then U0 = δ(V ,Uk−1Uk−2 · · ·U1U0) is reachable.
I Hence A is completely reachable and G admits a completely reachable coloring.

15 / 18



The proof, cont’d
Now we construct a road coloring α : E → P(Σ), where Σ = P(V ) \ {∅} by setting

α(e) = {U : fU(t(e)) = i(e), ∅ 6= U ⊆ V }.

Let A = (V ,Σ, δ) = A(G , α). Note that for every non-empty subset U, we have

δ(N−(U),U) = U.

I Let U0 be an arbitrary non-empty subset of V , define Ui = N−(Ui−1) for all
positive integer i .

I Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uk = V .

I Then U0 = δ(V ,Uk−1Uk−2 · · ·U1U0) is reachable.
I Hence A is completely reachable and G admits a completely reachable coloring.

15 / 18



The proof, cont’d
Now we construct a road coloring α : E → P(Σ), where Σ = P(V ) \ {∅} by setting

α(e) = {U : fU(t(e)) = i(e), ∅ 6= U ⊆ V }.

Let A = (V ,Σ, δ) = A(G , α). Note that for every non-empty subset U, we have

δ(N−(U),U) = U.

I Let U0 be an arbitrary non-empty subset of V , define Ui = N−(Ui−1) for all
positive integer i .

I Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uk = V .

I Then U0 = δ(V ,Uk−1Uk−2 · · ·U1U0) is reachable.
I Hence A is completely reachable and G admits a completely reachable coloring.

15 / 18



The proof, cont’d
Now we construct a road coloring α : E → P(Σ), where Σ = P(V ) \ {∅} by setting

α(e) = {U : fU(t(e)) = i(e), ∅ 6= U ⊆ V }.

Let A = (V ,Σ, δ) = A(G , α). Note that for every non-empty subset U, we have

δ(N−(U),U) = U.

I Let U0 be an arbitrary non-empty subset of V , define Ui = N−(Ui−1) for all
positive integer i .

I Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uk = V .

I Then U0 = δ(V ,Uk−1Uk−2 · · ·U1U0) is reachable.
I Hence A is completely reachable and G admits a completely reachable coloring.

15 / 18



The proof, cont’d
Now we construct a road coloring α : E → P(Σ), where Σ = P(V ) \ {∅} by setting

α(e) = {U : fU(t(e)) = i(e), ∅ 6= U ⊆ V }.

Let A = (V ,Σ, δ) = A(G , α). Note that for every non-empty subset U, we have

δ(N−(U),U) = U.

I Let U0 be an arbitrary non-empty subset of V , define Ui = N−(Ui−1) for all
positive integer i .

I Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uk = V .

I Then U0 = δ(V ,Uk−1Uk−2 · · ·U1U0) is reachable.
I Hence A is completely reachable and G admits a completely reachable coloring.

15 / 18



Theorem (Z., 2023+)
Let k ≥ 2 be a fixed integer. To determine a given digraph G = (V ,E , i , t) whether or
not it admits a completely reachable with k colors is NP-complete.
Proof for k = 2:
I Let G = (V ,E , i , t) be a digraph such that

1. |V | is an odd prime number;
2. for every vertex v , d+(v) = 2;
3. there exist vertices x and y such that d−(x) = 1, d−(y) = 3 and d−(z) = 2, for

each z ∈ V \ {x , y}.
I Then G admits a completely reachable coloring if and only if G has a hamitonian

cycle (a directed cycle visits each vertex once).
I To determine whether or not such a given graph G has a hamitonian cycle is

NP-complelte. (Our proof is obtained from the proof in Plesnik’s paper2 with some
small modification.)

2J. Plesńık (1979). “The NP-completeness of the Hamiltonian cycle problem in planar digraphs
with degree bound two”. In: Inform. Process. Lett. 8.4, pp. 199–201. issn: 0020-0190,1872-6119.
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Plesnik’s Reduction
I Reduce from the 3-SAT problem.
I Construct a digraph G for a given boolean formula F . Vertices of G have

in-degree and out-degree at most 2.
I G has a hamitonian cycle if and only if F is satisfiable.
I The following figure is the digraph corresponding to

F = (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3).
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Open problems

Let f : N→ N.
1. For a given digarph G with n vertices, is there a polynomial-time algorithm to

determine whether G admits a completely reachable coloring which uses f (n)
colors?

2. For a given digraph G which admits a completely reachable coloring, can we find
one completely reachable coloring in polynomial time?

Thank you
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