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Deterministic finite automata

A deterministic finite automata (DFA) is a triple A = (Q,Σ, δ) where
I Q is a finite set, called the state set;
I Σ is a finite set, called the input alphabet;
I δ : Q × Σ→ Q is a map, called the transition function.

Σ∗ stands for the set of all words over Σ including the empty word ε. The function δ
extends to a function Q × Σ∗ → Q (still denoted by δ) via the the following recursion:
For every q ∈ Q, we set

δ(q, ε) = q

δ(q,wa) = δ(δ(q,w), a)

for all w ∈ Σ∗ and a ∈ Σ.
To simplify the notation, we often write q.w for δ(q,w) and P.w for {δ(q,w) : q ∈ P}.

1 / 28



Deterministic finite automata

A deterministic finite automata (DFA) is a triple A = (Q,Σ, δ) where
I Q is a finite set, called the state set;
I Σ is a finite set, called the input alphabet;
I δ : Q × Σ→ Q is a map, called the transition function.

Σ∗ stands for the set of all words over Σ including the empty word ε. The function δ
extends to a function Q × Σ∗ → Q (still denoted by δ) via the the following recursion:
For every q ∈ Q, we set

δ(q, ε) = q

δ(q,wa) = δ(δ(q,w), a)

for all w ∈ Σ∗ and a ∈ Σ.
To simplify the notation, we often write q.w for δ(q,w) and P.w for {δ(q,w) : q ∈ P}.

1 / 28



Deterministic finite automata

A deterministic finite automata (DFA) is a triple A = (Q,Σ, δ) where
I Q is a finite set, called the state set;
I Σ is a finite set, called the input alphabet;
I δ : Q × Σ→ Q is a map, called the transition function.

Σ∗ stands for the set of all words over Σ including the empty word ε. The function δ
extends to a function Q × Σ∗ → Q (still denoted by δ) via the the following recursion:
For every q ∈ Q, we set

δ(q, ε) = q

δ(q,wa) = δ(δ(q,w), a)

for all w ∈ Σ∗ and a ∈ Σ.
To simplify the notation, we often write q.w for δ(q,w) and P.w for {δ(q,w) : q ∈ P}.

1 / 28



Completely reachable automata

Let A = (Q,Σ, δ) be a DFA.
I A non-empty subset P ⊆ Q is reachable in A if P = Q.w for some word w ∈ Σ∗.
I A DFA is completely reachable if every non-empty set of its states is reachable.
I A DFA is synchronizing if there exists a reachable singleton set {x} ⊆ Q.
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Digraph

A digraph is a quadruple G = (V ,E , i , t) where V ,E are non-empty sets and
i , t : E → V .
I The elements in V are called vertices;
I the elements of E are called edges;

for an edge e ∈ E ,
I the vertex i(e) is called the initial vertex of e;
I the vertex t(e) is called the terminal vertex of e.
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Neighbours and degrees

Let v be a vertex in a digraph G .
I The out-neighbour of v is the set {i(e) : t(e) = v , e ∈ E}, denoted N+(v).
I The in-neighbour of v is the set {t(e) : i(e) = v , e ∈ E}, denoted N−(v).
I For a subset U ∈ V ,

I write N+(U) for the set {u : N+(u), u ∈ U};
I write N−(U) for the set {u : N−(u), u ∈ U}.

I The out-degree of v is the number of edges whose initial vertex is v , denoted
d+(v).

I The in-degree of v is the number of edges whose terminal vertex is v , denoted
d−(v).
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Road colorings

For a set X , write P(X ) for the power set of X .

A road coloring of a finite digraph G = (V ,E , i , t) is a function α : E → P(Σ) such
that for every vertex v ∈ V , the family of sets

{α(e) : t(e) = v , e ∈ E}

forms a partition of Σ.
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Automata from road colorings

Let α : E → P(Σ) be a road coloring of G .
Define A(G , α) to the automaton (V ,Σ, δ) such that for every v ∈ V and a ∈ Σ,

v .a = t(e)

where e is the arc such that i(e) = v and a ∈ α(e).
The road coloring α
I is called a sychronizing coloring if A(G , α) is a synchronizing automata;
I is called a completely reachable coloring if A(G , α) is a completely reachable

automata.
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Trahtman’s Road Coloring Theorem

I The period of a strongly connected digraph G is the greatest common divisor of
the lengths of its cycles, denoted p(G ).

I A digraph is called aperiodic if its period equals 1.

Theorem (Trahtman1, 2009)
Let G = (V ,E , i , t) be a strongly connected digraph and d = max{d+(v), v ∈ V }. The
following are equivalent.
1. The digraph G admits a synchronizing coloring.
2. The digraph G admits a synchronizing coloring with d colors.
3. The digraph G is aperiodic.

1A. N. Trahtman (2009). “The road coloring problem”. В: Israel J. Math. 172, с. 51—60. issn:
0021-2172,1565-8511.
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Completely reachable colorings

Theorem (Z., 2023+)
A digraph G = (V ,E , i , t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U ⊆ V , |U| ≤ |N−(U)|.

Theorem (Z., 2023+)
Let k ≥ 2 be a fixed integer. To determine a given digraph G = (V ,E , i , t) whether or
not it admits a completely reachable with k colors is NP-complete.
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Cyclic Decomposition Theorem

Theorem (Cyclic Decomposition Theorem)
Let G be a strongly connected digraph of period p. The vertex set can be partition into
p sets {Ci : i ∈ Zp} such that N+(Ci ) = Ci+1 for every i ∈ Zp.
Moreover, for each vertex v ∈ Cj for some j , there exists a positive integer k such that

Nk
−(v) = N−(· · ·N−(︸ ︷︷ ︸

k

v)) = Cj .
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Hall’s Marriage Theorem

A bipartite graph H = (X ,Y ,E ) is a triple, where X ,Y are two nonempty sets and
E ⊆ X × Y .
The elements in X ∪ Y are vertices and the elements in E are edges. A X -perfect
matching of H is a matching, a set of disjoint edges, which covers every vertex in X .
For U ⊆ X , the neighborhood of U is the set {w : (u,w) ∈ E , u ∈ U}, denoted N(U).

Theorem (Hall’s Marriage Theorem)
Let H = (X ,Y ,E ) be a bipartite graph. There exists an X -perfect matching if and only
if for every subset U ⊆ X , we have |U| ≤ N(U).
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The proof

Theorem (Z., 2023+)
A digraph G = (V ,E , i , t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U ⊆ V , |U| ≤ |N−(U)|.
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The proof

“⇒”:
I Let α be a completely reachable coloring of G and its color set is Σ. The

corresponding autoaton is A(G , α) = (V ,Σ, δ).
I For every two vertices u, v , by completely reachability, there exists a word w such

that V .w = {u} and then δ(v ,w) = u. Then there exists a walk in G from v to u.
I By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets
{Ci : i ∈ Zp} such that N+(Ci ) = Ci+1 for every i ∈ Zp.

I Then for any word w ∈ Σ∗ and i ∈ Zp, V .w ∩ Ci 6= ∅. Since every singleton set is
reachable. we have p = 1.

I For a non-empty subset U ⊆ V , take a word w = w ′a ∈ Σ∗ such that V .w = U.
Let W be the set V .w ′. Then

|U| ≤ |W | ≤ |N−(U)|.
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The proof, cont’d

“⇐”:
I Define H to be the bipartite graph H = (V1,V2,EH) such that V1 = V2 = V and

(u, v) ∈ EH if there exists e ∈ E such that i(e) = u and t(e) = v .
I Observe that for every non-empty subset U ⊆ V1, then |U| ≤ |N(U)|.

Let W be a non-empty subset of V1. Let H ′ be the induced subgraph of H on
W ∪ N(W ). By the Hall’s Marriage Theorem, there exists a W -perfect matching M in
H ′.
Now we can define a function fW : V2 → V1 as following:
1. for y ∈ V2 which is covered by edge (x , y) ∈ M, set fW (y) = x ;
2. for y ∈ N(W ) which is not covered by the matching M, set fW (y) to be an

arbitrary vertex in W ∩ N(y).
3. for y ∈ V2 \ N(W ), set fW (y) to be an arbitrary vertex in N(y).

It is clear that W = fW (N(W )).
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The proof, cont’d
Now we construct a road coloring α : E → P(Σ), where Σ = P(V ) \ {∅} by setting

α(e) = {U : fU(t(e)) = i(e), ∅ 6= U ⊆ V }.

Let A = (V ,Σ, δ) = A(G , α). Note that for every non-empty subset U, we have

δ(N−(U),U) = U.

I Let U0 be an arbitrary non-empty subset of V , define Ui = N−(Ui−1) for all
positive integer i .

I Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uk = V .

I Then U0 = δ(V ,Uk−1Uk−2 · · ·U1U0).
I Hence A is completely reachable and G admits a completely reachable coloring.
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Theorem (Z., 2023+)
Let k ≥ 2 be a fixed integer. To determine a given digraph G = (V ,E , i , t) whether or
not it admits a completely reachable with k colors is NP-complete.
Proof for k = 2:
I Let G = (V ,E , i , t) be a digraph such that

1. |V | is an odd prime number;
2. for every vertex v , d+(v) = 2;
3. there exist vertice x and y such that d−(x) = 1, d−(y) = 3 and d−(z) = 2, for each

z ∈ V \ {x , y}.
I Then G admits a completely reachable coloring if and only if G has a hamitonian

cycle.
I To determine whether or not such a given graph G has a hamitonian cycle is

NP-complelte. (Our proof is obtained from the proof in this paper2 with some
small modification.)

2J. Plesńık (1979). “The NP-completeness of the Hamiltonian cycle problem in planar digraphs with
degree bound two”. В: Inform. Process. Lett. 8.4, с. 199—201. issn: 0020-0190,1872-6119.
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Problems

Let f : N→ N.
1. For a given digarph G with n vertices, is there a polynomial-time algorithm to

determine whether G admits a completely reachable coloring which uses f (n)
colors?

2. For a given digraph G which admits a completely reachable coloring, can we find
one completely reachable coloring in polynomial time?

15 / 28



Don’s Conjecture

Henk Don3 conjecture that if in a DFA with n states, some subset S of states is
reachable, then S is reachable by a word of length ≤ n(n − |S |).
If Don’s Conjecture is true, it implies the famous Černý Conjecture: If A is a
sychronizing DFA with n states, then there exists a signleton set is reachable by a word
of length ≤ (n − 1)2.
François Gonze and Raphaël Jungers4 constructed a series of n-state automata with a
distinguished subset S of bn2c such that if n ≥ 6 then the shortest word that reaches S
is greater than 2n

n .

3Henk Don (2016). “The Černý conjecture and 1-contracting automata”. В: Electron. J. Combin.
23.3, Paper 3.12, 10. issn: 1077-8926.

4François Gonze и Raphaël M. Jungers (2019). “Hardly reachable subsets and completely reachable
automata with 1-deficient words”. В: J. Autom. Lang. Comb. 24.2-4, с. 321—342. issn:
1430-189X,2567-3785.
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4François Gonze и Raphaël M. Jungers (2019). “Hardly reachable subsets and completely reachable
automata with 1-deficient words”. В: J. Autom. Lang. Comb. 24.2-4, с. 321—342. issn:
1430-189X,2567-3785.

16 / 28



Don’s Conjecture for completely reachable automata

The restriction of the conjecture to completely reachable automata is still an open
problem.

Conjecture
If in a completely reachable DFA with n states, some subset S of states is reachable,
then S is reachable by a word of length ≤ n(n − |S |).

Theorem (Robert Ferens and Marek Szyku la5, 2023)
If in a completely reachable DFA with n states, some subset S of states is reachable,
then S is reachable by a word of length ≤ 2n(n − |S |).

5Robert Ferens и Marek Szyku l a (2023). “Completely reachable automata: a polynomial algorithm
and quadratic upper bounds”. В: 50th International Colloquium on Automata, Languages, and
Programming. Т. 261. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, Art. No. 59, 17. isbn: 978-3-95977-278-5.
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Binary completely reachable automata

I DFAs with two letters are called binary.
I For n ≥ 3, an n-state binary completely reachable automaton is circular, that is,

one of the letters acts as a circular permutation.
I For an n-state binary completely reachable automaton DFA A = (Q,Σ, δ), we will

assume Q = Zn, Σ = {a, b} and for all q ∈ Q, q.b = q ⊕ 1, where ⊕ stands for
addition modulo n.

I Observe that |Q \ Q.a| = 1. We will also assume that {0} = Q \ Q.a.
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Standardized automata

Let A = (Zn, {a, b}, δ) be a binary completely reachable automaton. The automata A
is called standardized, if there exists a state r 6= 0 such that 0.a = r .a.
Let H1 be the subgroup of (Zn,⊕) generated by {0.ak : 1 ≤ k ≤ n}.
I [David Casas and Mikhail Volkov6, 2023+] Let A be a standardized automata. If

H1 = (Zn,⊕) then A fulfills Don’s Conjecture.
I [Z., 2023+] Let A be a standardized automata. If H1 ∼= (Zn/2,⊕) then A fulfills

Don’s Conjecture.
I [Z., 2023+] Let A be a standardized automata. For a non-empty subset S ⊆ Zn, S

is reachable by a word of length ≤ n(n − |S |) + n − 1.

6David Casas и Mikhail V. Volkov (2023). Don’s conjecture for binary completely reachable
automata: an approach and its limitations. arXiv: 2311.00077 [cs.FL].
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Expandable

Let A = (Q,Σ, δ) be an n-state DFA and S a subset of Q.
I A word w over Σ expands S if there exists a set R such that R.w = S and
|R| > |S |.

I A proper non-empty subset of Q is said to be k-expandable if it can be expanded
by a word of length at most k .

I If every proper non-empty subset of Q is n-expandable, then the DFA A fulfills
Don’s Conjecture.

I There exists a standradized DFA and a subset of states such that the subset is not
n-expandable in the DFA.
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A sequence of subgroups

Let A = (Zn, {a, b}, δ) be a standardized DFA. For a subgroup H of (Zn,⊕), define
U(A,H) = {i ∈ {1, . . . , n

|H| − 1} : H.ak ∩ (H ⊕ i) 6= ∅, k ≥ 1}.
Since A is completely reachable, U(A,H) is non-empty.
I Define H0 to the trivial subgroup of (Zn,⊕).
I For an integer i ≥ 1 such that Hi−1 6= (Zn,⊕), define Hi to be the subgroup of

(Zn,⊕) generated by Hi−1 ∪ U(A,Hi−1).
I We obtain a sequence of subgroups

{0} = H0 C H1 C · · ·C H` = (Zn,⊕).

I Observe that ` ≤ Ω(n), where Ω(n) is the number of prime factors of n with
multiplicity.
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Outline of our proof
Theorem (Z., 2023+)
Let A = (Zn,Σ, δ) be a standardized automata. For a non-empty subset S , S is
reachable by a word of length ≤ n(n − k) + n − 1.
There are some minor differences between the real proof and the following outline.
Outline of our proof:
I Write qi for n

|Hi | . Let S ⊆ Zn. And define m(S) be the integer m such that S is
not a union of Hm-cosets and is a union of Hm−1-cosets.

I There exists a word w of length ≤ qm(S)−1 such that R.w = S and either
|R| > |S | or m(R) < m(S).

I Moreover, if 0 /∈ S , then we can improve the estimate of the length of w to
|w | ≤ qm(S)−1 − qm(S) + 1.

I Then, for every non-empty proper subset S , there exists an expanding word for S
of length ≤ n + m(S).

I By connecting some expanding words, we can get a word w ′ of length
≤ n(n − |S |) + n − 1 such that Zn .w

′ = S .
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Restricted Cayley digraph
Let k be a positive integer. Write [k] for {1, . . . , k}.
I A [k]-graded set (X , f ) is a set X together with a function f : X → [k].
I Let X be a subset of a group G , the Cayley digraph of G with respect to X ,

denoted Cay(G ,X ), has G as its vertex set and {(g , gx) : g ∈ G , x ∈ X} as its
edge set.

I If G = Zn is a cyclic group and (X , f ) is [k]-graded set, the restricted Cayley
digraph R(G ,X , f ) of Zn with respect to (X , f ) has G as its vertex set and
{(g , gx) : g ∈ G , x ∈ X , g + f (x) ≤ n} as its edge set.

Lemma
Let G = (Zn,⊕). Let (X , f ) be a [k]-graded set. If f is a surjective map, then the
strongly connected components of R(G ,X , f ) have the cosets of 〈X 〉 as their vertex
sets.
This lemma is a corollary of [Proposition 5,7].

7David Casas и Mikhail V. Volkov (2023). Don’s conjecture for binary completely reachable
automata: an approach and its limitations. arXiv: 2311.00077 [cs.FL].
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Lemma
Let A is a standardize DFA. Let S be proper non-empty subset of Zn. Then there exists
a word w of length ≤ qm(S)−1 satisfying one of the following conditions:
1. |R| > |S |;
2. 0 /∈ R and Hm−1 ∩ R =6= ∅ which imply m(R) < m(S).

Proof:
I Set G := (Zn,⊕)/Hm−1, X = {Hm−1 ⊕ j : j ∈ U(A,Hm−1)} and f (Hm−1 ⊕ j) to

be the least integer k such that Hm−1.a
k ∩ (Hm−1 ⊕ j) 6= ∅.

I In R(G ,X , f ), there exists a strongly connected component C = Hm ⊕ t such that
C ∩ S /∈ {∅,C}. (Regard C and S as sets of Hm−1-cosets.)

I Take two vertices L = Hm−1 ⊕ p ∈ C \ S and L′ = Hm−1 ⊕ p′ ∈ C ∩ S such that
(L, L′) is an edge of R(G ,X , f ).

I One can check that af (Hm−1⊕(p′−p))bp is a word satisfying our requirements.
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In the case that 0 /∈ S and Hm(S) ∩ S 6= ∅,
I Consider S .bqm−1.
I Applying the arguments in the last slides for S .bqm−1, we can obtain a word

af (Hm−1⊕(p′−p))bp satisfying our requirements with respect to S .bqm−1.
I We can prove that p ≥ qm − 1. So the word af (Hm−1⊕(p′−p))bp−qm+1 satifies our

requirements with respect to S and its length is at most qm−1 − qm + 1.
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Using the above lemma successively, we obtain

Sk
wk−1
// Sk−1

wk−2
// · · · w1 // S1

w0 // S0 = S

such that |Sk | > |S | and

|w0| ≤ qm(S0)−1

|wi | ≤ qm(Si )−1 − qm(Si ) + 1 for every i ∈ [k − 1].

Since m(Si )− 1 ≥ m(Si+1), we have qm(Si )−1 ≤ qm(Si+1) for all i > 0.
Let u = wk−1 · · ·w2w1. Hence we have |u| ≤ qm(Sk−1) + k − 1 ≤ n + m(S).
We say that the word u “meet” a subgroup Hm if there exists Si such that m(Si ) = m.
It is clear that |u| ≤ n + (the number of subgroups met by u)− 1.
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Sk
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wk−2
// · · · w1 // S1
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Using arguments in the last slides successively, we obtain

Rk
uk−1
// Rk−1

uk−2
// · · · u1 // R1

u0 // R0 = S (1)

where Rk = Zn and |Ri | > |Ri−1|.
For every subgroup Hm, only at most n

|Hm| words in {u0, . . . , uk−1} meet Hm. Then

k−1∑
i=0

|ui | ≤ n(n − |S |) +
∑̀
j=1

n

|Hm|
≤ n(n − |S |) + n − 1.
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Thank you

Спасибо
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