Two problems on completely reachable automata

Road coloring problem and Don's conjecture

Yinfeng Zhu
Ural Federal University

1340-е заседание семинара "Алгебраические системы" 16 декабря 2023 г.

Deterministic finite automata

A deterministic finite automata (DFA) is a triple $\mathcal{A}=(Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.
Σ^{*} stands for the set of all words over Σ including the empty word ϵ. The function δ extends to a function $Q \times \Sigma^{*} \rightarrow Q$ (still denoted by δ) via the the following recursion:
For every $q \in Q$, we set

$$
\begin{array}{r}
\delta(q, \epsilon)=q \\
\delta(q, w a)=\delta(\delta(q, w), a)
\end{array}
$$

for all $w \in \Sigma^{*}$ and $a \in \Sigma$.
To simplify the notation, we often write $q \cdot w$ for $\delta(q, w)$ and $P . w$ for $\{\delta(q, w): q \in P\}$.

Deterministic finite automata

A deterministic finite automata (DFA) is a triple $\mathcal{A}=(Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.
Σ^{*} stands for the set of all words over Σ including the empty word ϵ. The function δ extends to a function $Q \times \Sigma^{*} \rightarrow Q$ (still denoted by δ) via the the following recursion: For every $q \in Q$, we set

$$
\begin{array}{r}
\delta(q, \epsilon)=q \\
\delta(q, w a)=\delta(\delta(q, w), a)
\end{array}
$$

for all $w \in \Sigma^{*}$ and $a \in \Sigma$.
To simplify the notation, we often write $q . w$ for $\delta(q, w)$ and P.w for $\{\delta(q, w): q \in P\}$

Deterministic finite automata

A deterministic finite automata (DFA) is a triple $\mathcal{A}=(Q, \Sigma, \delta)$ where

- Q is a finite set, called the state set;
- Σ is a finite set, called the input alphabet;
- $\delta: Q \times \Sigma \rightarrow Q$ is a map, called the transition function.
Σ^{*} stands for the set of all words over Σ including the empty word ϵ. The function δ extends to a function $Q \times \Sigma^{*} \rightarrow Q$ (still denoted by δ) via the the following recursion: For every $q \in Q$, we set

$$
\begin{array}{r}
\delta(q, \epsilon)=q \\
\delta(q, w a)=\delta(\delta(q, w), a)
\end{array}
$$

for all $w \in \Sigma^{*}$ and $a \in \Sigma$.
To simplify the notation, we often write $q . w$ for $\delta(q, w)$ and $P . w$ for $\{\delta(q, w): q \in P\}$.

Completely reachable automata

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be a DFA.

- A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if $P=Q . w$ for some word $w \in \Sigma^{*}$.
\Rightarrow A DFA is completely reachable if every non-empty set of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Completely reachable automata

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be a DFA.

- A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if $P=Q . w$ for some word $w \in \Sigma^{*}$.
- A DFA is completely reachable if every non-empty set of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Completely reachable automata

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be a DFA.

- A non-empty subset $P \subseteq Q$ is reachable in \mathcal{A} if $P=Q . w$ for some word $w \in \Sigma^{*}$.
- A DFA is completely reachable if every non-empty set of its states is reachable.
- A DFA is synchronizing if there exists a reachable singleton set $\{x\} \subseteq Q$.

Digraph

A digraph is a quadruple $G=(V, E, i, t)$ where V, E are non-empty sets and $i, t: E \rightarrow V$.

- The elements in V are called vertices;
- the elements of E are called edges;
for an edge $e \in E$,
- the vertex $i(e)$ is called the initial vertex of e;
- the vertex $t(e)$ is called the terminal vertex of e

Digraph

A digraph is a quadruple $G=(V, E, i, t)$ where V, E are non-empty sets and $i, t: E \rightarrow V$.

- The elements in V are called vertices;
- the elements of E are called edges;
for an edge $e \in E$,
- the vertex $i(e)$ is called the initial vertex of e;
- the vertex $t(e)$ is called the terminal vertex of e.

Neighbours and degrees

Let v be a vertex in a digraph G.

- The out-neighbour of v is the set $\{i(e): t(e)=v, e \in E\}$, denoted $N_{+}(v)$.
- The in-neighbour of v is the set $\{t(e): i(e)=v, e \in E\}$, denoted $N_{-}(v)$.
\rightarrow For a subset $U \in V$,
- write $N_{+}(U)$ for the set $\left\{u: N_{+}(u), u \in U\right\}$;
D. The out-degree of v is the number of edges whose initial vertex is v, denoted

The in-degree of v is the number of edges whose terminal vertex is v, denoted $d_{-}(v)$.

Neighbours and degrees

Let v be a vertex in a digraph G.

- The out-neighbour of v is the set $\{i(e): t(e)=v, e \in E\}$, denoted $N_{+}(v)$.
- The in-neighbour of v is the set $\{t(e): i(e)=v, e \in E\}$, denoted $N_{-}(v)$.
- For a subset $U \in V$,
- write $N_{+}(U)$ for the set $\left\{u: N_{+}(u), u \in U\right\}$;
- write $N_{-}(U)$ for the set $\left\{u: N_{-}(u), u \in U\right\}$.
\Rightarrow The out-degree of v is the number of edges whose initial vertex is v, denoted

The in-degree of v is the number of edges whose terminal vertex is v, denoted d_(v).

Neighbours and degrees

Let v be a vertex in a digraph G.

- The out-neighbour of v is the set $\{i(e): t(e)=v, e \in E\}$, denoted $N_{+}(v)$.
- The in-neighbour of v is the set $\{t(e): i(e)=v, e \in E\}$, denoted $N_{-}(v)$.
- For a subset $U \in V$,
- write $N_{+}(U)$ for the set $\left\{u: N_{+}(u), u \in U\right\}$;
- write $N_{-}(U)$ for the set $\left\{u: N_{-}(u), u \in U\right\}$.
- The out-degree of v is the number of edges whose initial vertex is v, denoted $d_{+}(v)$.
- The in-degree of v is the number of edges whose terminal vertex is v, denoted $d_{-}(v)$.

Road colorings

For a set X, write $\mathcal{P}(X)$ for the power set of X.
A road coloring of a finite digraph $G=(V, E, i, t)$ is a function $\alpha: E \rightarrow \mathcal{P}(\Sigma)$ such that for every vertex $v \in V$, the family of sets

$$
\{\alpha(e): t(e)=v, e \in E\}
$$

forms a partition of Σ.

Automata from road colorings

Let $\alpha: E \rightarrow \mathcal{P}(\Sigma)$ be a road coloring of G.
Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$
v \cdot a=t(e)
$$

where e is the arc such that $i(e)=v$ and $a \in \alpha(e)$.
The road coloring α

- is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automata;
- is called a completely reachable coloring if $\mathcal{A}(G, \alpha)$ is a completely reachable automata.

Automata from road colorings

Let $\alpha: E \rightarrow \mathcal{P}(\Sigma)$ be a road coloring of G.
Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$
v \cdot a=t(e)
$$

where e is the arc such that $i(e)=v$ and $a \in \alpha(e)$.
The road coloring α

- is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automata;
- is called a completely reachable coloring if $\mathcal{A}(G, \alpha)$ is a completely reachable automata.

Automata from road colorings

Let $\alpha: E \rightarrow \mathcal{P}(\Sigma)$ be a road coloring of G.
Define $\mathcal{A}(G, \alpha)$ to the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$,

$$
v \cdot a=t(e)
$$

where e is the arc such that $i(e)=v$ and $a \in \alpha(e)$.
The road coloring α

- is called a sychronizing coloring if $\mathcal{A}(G, \alpha)$ is a synchronizing automata;
- is called a completely reachable coloring if $\mathcal{A}(G, \alpha)$ is a completely reachable automata.

Trahtman's Road Coloring Theorem

- The period of a strongly connected digraph G is the greatest common divisor of the lengths of its cycles, denoted $p(G)$.
- A digraph is called aperiodic if its period equals 1 .

Theorem (Trahtman ${ }^{1}$, 2009)
Let $G=(V, E, i, t)$ be a strongly connected digraph and $d=\max \left\{d_{+}(v), v \in V\right\}$. The following are equivalent.

1. The digraph G admits a synchronizing coloring.
2. The digraph G admits a synchronizing coloring with d colors.
3. The digraph G is aperiodic.
[^0]
Completely reachable colorings

Theorem (Z., 2023+)
A digraph $G=(V, E, i, t)$ admits a completely reachable coloring if and only if

1. G is strongly connected,
2. G is aperiodic,
3. for every subset $U \subseteq V,|U| \leq\left|N_{-}(U)\right|$.

Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.

Completely reachable colorings

Theorem (Z., 2023+)

A digraph $G=(V, E, i, t)$ admits a completely reachable coloring if and only if

1. G is strongly connected,
2. G is aperiodic,
3. for every subset $U \subseteq V,|U| \leq\left|N_{-}(U)\right|$.

Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.

Cyclic Decomposition Theorem

Theorem (Cyclic Decomposition Theorem)

Let G be a strongly connected digraph of period p. The vertex set can be partition into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
Moreover, for each vertex $v \in C_{j}$ for some j, there exists a positive integer k such that

$$
N_{-}^{k}(v)=\underbrace{N_{-}\left(\cdots N_{-}\right.}_{k}(v))=C_{j} .
$$

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. $A X$-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X For $U \subseteq X$, the neighborhood of U is the set $\{w:(u, w) \in E, u \in U\}$, denoted $N(U)$,

Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X.

Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w:(u, w) \in E, u \in U\}$, denoted $N(U)$.

Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

Hall's Marriage Theorem

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty sets and $E \subseteq X \times Y$.
The elements in $X \cup Y$ are vertices and the elements in E are edges. A X-perfect matching of H is a matching, a set of disjoint edges, which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{w:(u, w) \in E, u \in U\}$, denoted $N(U)$.
Theorem (Hall's Marriage Theorem)
Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching if and only if for every subset $U \subseteq X$, we have $|U| \leq N(U)$.

The proof

Theorem (Z., 2023+)
A digraph $G=(V, E, i, t)$ admits a completely reachable coloring if and only if

1. G is strongly connected,
2. G is aperiodic,
3. for every subset $U \subseteq V,|U| \leq\left|N_{-}(U)\right|$.

The proof

" \Rightarrow ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u.
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
- Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$ Let W be the set $V . w^{\prime}$. Then

$$
|U| \leq|W| \leq\left|N_{-}(U)\right| .
$$

The proof

$" \Rightarrow$ ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u.
\Rightarrow By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
- Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$ Let W be the set $V . w^{\prime}$. Then

$$
|U| \leq|W| \leq\left|N_{-}(U)\right| .
$$

The proof

$" \Rightarrow$ ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u.
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
\Rightarrow Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$ Let W be the set $V . w^{\prime}$. Then
$|U| \leq|W| \leq\left|N_{-}(U)\right|$

The proof

$" \Rightarrow$ ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u.
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
- Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$ Let W be the set $V . w^{\prime}$. Then
$|U| \leq|W| \leq\left|N_{-}(U)\right|$

The proof

" \Rightarrow ":

- Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathcal{A}(G, \alpha)=(V, \Sigma, \delta)$.
- For every two vertices u, v, by completely reachability, there exists a word w such that $V . w=\{u\}$ and then $\delta(v, w)=u$. Then there exists a walk in G from v to u.
- By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$.
- Then for any word $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since every singleton set is reachable. we have $p=1$.
- For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$. Let W be the set $V . w^{\prime}$. Then

$$
|U| \leq|W| \leq\left|N_{-}(U)\right|
$$

The proof, cont'd

$$
" \Leftarrow ":
$$

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $i(e)=u$ and $t(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on

 $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following.

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$

It is clear that $W=f_{W /}(N(W))$

The proof, cont'd

$$
" \Leftarrow ":
$$

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $i(e)=u$ and $t(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in

```
Now we can define a function }\mp@subsup{f}{W}{}:\mp@subsup{V}{2}{}->\mp@subsup{V}{1}{}\mathrm{ as following
    1. for }y\inV/2\mathrm{ which is covered by edge (x,y) 
    2. for }y\inN(W)\mathrm{ which is not covered by the matching }M\mathrm{ , set f}\mp@subsup{f}{W}{}(y)\mathrm{ to be an
    arbitrary vertex in W\capN(y).
    3. for }y\in1/2\N(M/)\mathrm{ , set fw(y) to be an arbitrary vertex in N(y)
It is clear that W = fW (N(W)).
```


The proof, cont'd

$$
" \Leftarrow ":
$$

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $i(e)=u$ and $t(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$.

It is clear that $W=f_{W N}(N(W))$.

The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $i(e)=u$ and $t(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(M /)$ set $f_{M}(y)$ to be an arbitrary vertex in $N(y)$

It is clear that $W=f_{W}(N(W))$.

The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $i(e)=u$ and $t(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$ It is clear that $W=f_{W}(N(W))$

The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $i(e)=u$ and $t(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$.
[^1]
The proof, cont'd

$" \Leftarrow "$ "

- Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $(u, v) \in E_{H}$ if there exists $e \in E$ such that $i(e)=u$ and $t(e)=v$.
- Observe that for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq|N(U)|$.

Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on
$W \cup N(W)$. By the Hall's Marriage Theorem, there exists a W-perfect matching M in H^{\prime}.
Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:

1. for $y \in V_{2}$ which is covered by edge $(x, y) \in M$, set $f_{W}(y)=x$;
2. for $y \in N(W)$ which is not covered by the matching M, set $f_{W}(y)$ to be an arbitrary vertex in $W \cap N(y)$.
3. for $y \in V_{2} \backslash N(W)$, set $f_{W}(y)$ to be an arbitrary vertex in $N(y)$.

It is clear that $W=f_{W}(N(W))$.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\} .
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$
\Rightarrow Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
\Rightarrow Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$.
\Rightarrow Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
\Rightarrow Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$.
\rightarrow Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
\rightarrow Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$.
- Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

The proof, cont'd

Now we construct a road coloring $\alpha: E \rightarrow \mathcal{P}(\Sigma)$, where $\Sigma=\mathcal{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(t(e))=i(e), \emptyset \neq U \subseteq V\right\}
$$

Let $\mathcal{A}=(V, \Sigma, \delta)=\mathcal{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{-}(U), U\right)=U
$$

- Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=N_{-}\left(U_{i-1}\right)$ for all positive integer i.
- Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem, there exists an integer k such that $U_{k}=V$.
- Then $U_{0}=\delta\left(V, U_{k-1} U_{k-2} \cdots U_{1} U_{0}\right)$.
- Hence \mathcal{A} is completely reachable and G admits a completely reachable coloring.

Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertice x and y such that $d_{-}(x)=1, d_{-}(y)=3$ and $d_{-}(z)=2$, for each

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle.
\rightarrow To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in this paper ${ }^{2}$ with some small modification.)

[^2]Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertice x and y such that $d_{-}(x)=1, d_{-}(y)=3$ and $d_{-}(z)=2$, for each

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle.
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in this paper ${ }^{2}$ with some small modification.)

[^3]Theorem (Z., 2023+)
Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertice x and y such that $\mathrm{d}_{-}(x)=1, \mathrm{~d}_{-}(y)=3$ and $\mathrm{d}_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle.
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in this paper ${ }^{2}$ with some small modification.)

[^4]
Theorem (Z., 2023+)

Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertice x and y such that $\mathrm{d}_{-}(x)=1, \mathrm{~d}_{-}(y)=3$ and $\mathrm{d}_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle.
\rightarrow To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in this paper ${ }^{2}$ with some small modification.)

[^5]
Theorem (Z., 2023+)

Let $k \geq 2$ be a fixed integer. To determine a given digraph $G=(V, E, i, t)$ whether or not it admits a completely reachable with k colors is NP-complete.
Proof for $k=2$:

- Let $G=(V, E, i, t)$ be a digraph such that

1. $|V|$ is an odd prime number;
2. for every vertex $v, d_{+}(v)=2$;
3. there exist vertice x and y such that $\mathrm{d}_{-}(x)=1, \mathrm{~d}_{-}(y)=3$ and $\mathrm{d}_{-}(z)=2$, for each $z \in V \backslash\{x, y\}$.

- Then G admits a completely reachable coloring if and only if G has a hamitonian cycle.
- To determine whether or not such a given graph G has a hamitonian cycle is NP-complelte. (Our proof is obtained from the proof in this paper ${ }^{2}$ with some small modification.)

[^6]
Problems

Let $f: \mathbb{N} \rightarrow \mathbb{N}$.

1. For a given digarph G with n vertices, is there a polynomial-time algorithm to determine whether G admits a completely reachable coloring which uses $f(n)$ colors?
2. For a given digraph G which admits a completely reachable coloring, can we find one completely reachable coloring in polynomial time?

Don's Conjecture

Henk Don ${ }^{3}$ conjecture that if in a DFA with n states, some subset S of states is reachable, then S is reachable by a word of length $\leq n(n-|S|)$.
If Don's Conjecture is true, it implies the famous Cerný Conjecture: If \mathcal{A} is a sychronizing DFA with n states, then there exists a signleton set is reachable by a word of length $\leq(n-1)^{2}$.
François Gonze and Raphaël Jungers ${ }^{4}$ constructed a series of n-state automata with a distinguished subset S of $\left\lfloor\frac{n}{2}\right\rfloor$ such that if $n \geq 6$ then the shortest word that reaches S is greater than $\frac{2^{n}}{n}$.

[^7]
Don's Conjecture

Henk Don ${ }^{3}$ conjecture that if in a DFA with n states, some subset S of states is reachable, then S is reachable by a word of length $\leq n(n-|S|)$.
If Don's Conjecture is true, it implies the famous Černý Conjecture: If \mathcal{A} is a sychronizing DFA with n states, then there exists a signleton set is reachable by a word of length $\leq(n-1)^{2}$.
François Gonze and Raphaël Jungers ${ }^{4}$ constructed a series of n-state automata with a distinguished subset S of $\left\lfloor\frac{n}{2}\right\rfloor$ such that if $n \geq 6$ then the shortest word that reaches S is greater than $\frac{2^{n}}{n}$.

[^8]
Don's Conjecture

Henk Don ${ }^{3}$ conjecture that if in a DFA with n states, some subset S of states is reachable, then S is reachable by a word of length $\leq n(n-|S|)$.
If Don's Conjecture is true, it implies the famous Černy Conjecture: If \mathcal{A} is a sychronizing DFA with n states, then there exists a signleton set is reachable by a word of length $\leq(n-1)^{2}$.
François Gonze and Raphaël Jungers ${ }^{4}$ constructed a series of n-state automata with a distinguished subset S of $\left\lfloor\frac{n}{2}\right\rfloor$ such that if $n \geq 6$ then the shortest word that reaches S is greater than $\frac{2^{n}}{n}$.

[^9]
Don's Conjecture for completely reachable automata

The restriction of the conjecture to completely reachable automata is still an open problem.

Conjecture
If in a completely reachable DFA with n states, some subset S of states is reachable, then S is reachable by a word of length $\leq n(n-|S|)$.

Theorem (Robert Ferens and Marek Szykuła ${ }^{5}$, 2023)
If in a completely reachable DFA with n states, some subset S of states is reachable, then S is reachable by a word of length $\leq 2 n(n-|S|)$

[^10]
Don's Conjecture for completely reachable automata

The restriction of the conjecture to completely reachable automata is still an open problem.
Conjecture
If in a completely reachable DFA with n states, some subset S of states is reachable, then S is reachable by a word of length $\leq n(n-|S|)$.

Theorem (Robert Ferens and Marek Szykuła ${ }^{5}$, 2023)
If in a completely reachable DFA with n states, some subset S of states is reachable, then S is reachable by a word of length $\leq 2 n(n-|S|)$.

[^11]
Binary completely reachable automata

- DFAs with two letters are called binary.
- For $n \geq 3$, an n-state binary completely reachable automaton is circular, that is, one of the letters acts as a circular permutation.
- For an n-state binary completely reachable automaton $D F A \mathcal{A}=(Q, \Sigma, \delta)$, we will assume $Q=\mathbb{Z}_{n}, \Sigma=\{a, b\}$ and for all $q \in Q, q \cdot b=q \oplus 1$, where \oplus stands for addition modulo n.
- Observe that $|Q \backslash Q . a|=1$. We will also assume that $\{0\}=Q \backslash Q . a$.

Binary completely reachable automata

- DFAs with two letters are called binary.
- For $n \geq 3$, an n-state binary completely reachable automaton is circular, that is, one of the letters acts as a circular permutation.
- For an n-state binary completely reachable automaton DFA $\mathcal{A}=(Q, \Sigma, \delta)$, we will assume $Q=\mathbb{Z}_{n}, \Sigma=\{a, b\}$ and for all $q \in Q, q \cdot b=q \oplus 1$, where \oplus stands for addition modulo n.
- Observe that $|Q \backslash Q . a|=1$. We will also assume that $\{0\}=Q \backslash Q . a$.

Binary completely reachable automata

- DFAs with two letters are called binary.
- For $n \geq 3$, an n-state binary completely reachable automaton is circular, that is, one of the letters acts as a circular permutation.
- For an n-state binary completely reachable automaton DFA $\mathcal{A}=(Q, \Sigma, \delta)$, we will assume $Q=\mathbb{Z}_{n}, \Sigma=\{a, b\}$ and for all $q \in Q, q . b=q \oplus 1$, where \oplus stands for addition modulo n.
> Observe that $|Q \backslash Q . a|=1$. We will also assume that $\{0\}=Q \backslash Q . a$.

Binary completely reachable automata

- DFAs with two letters are called binary.
- For $n \geq 3$, an n-state binary completely reachable automaton is circular, that is, one of the letters acts as a circular permutation.
- For an n-state binary completely reachable automaton DFA $\mathcal{A}=(Q, \Sigma, \delta)$, we will assume $Q=\mathbb{Z}_{n}, \Sigma=\{a, b\}$ and for all $q \in Q, q \cdot b=q \oplus 1$, where \oplus stands for addition modulo n.
- Observe that $|Q \backslash Q . a|=1$. We will also assume that $\{0\}=Q \backslash Q . a$.

Binary completely reachable automata

- DFAs with two letters are called binary.
- For $n \geq 3$, an n-state binary completely reachable automaton is circular, that is, one of the letters acts as a circular permutation.
- For an n-state binary completely reachable automaton DFA $\mathcal{A}=(Q, \Sigma, \delta)$, we will assume $Q=\mathbb{Z}_{n}, \Sigma=\{a, b\}$ and for all $q \in Q, q \cdot b=q \oplus 1$, where \oplus stands for addition modulo n.
- Observe that $|Q \backslash Q . a|=1$. We will also assume that $\{0\}=Q \backslash Q . a$.

Standardized automata

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a binary completely reachable automaton. The automata \mathcal{A} is called standardized, if there exists a state $r \neq 0$ such that $0 . a=r . a$.

```
    - [David Casas and Mikhail Volkov \({ }^{6}, 2023+\) ] Let \(\mathcal{A}\) be a standardized automata. If
        \(H_{1}=\left(\mathbb{Z}_{n}, \oplus\right)\) then \(\mathcal{A}\) fulfills Don's Conjecture.
    - [Z., 2023+] Let \(\mathcal{A}\) be a standardized automata. If \(H_{1} \cong\left(\mathbb{Z}_{n / 2}, \oplus\right)\) then \(\mathcal{A}\) fulfills
        Don's Conjecture.
    - [Z., 2023+] Let \(\mathcal{A}\) be a standardized automata. For a non-empty subset \(S \subseteq \mathbb{Z}_{n}\). \(S\)
        is reachable by a word of length \(\leq n(n-|S|)+n-1\).
```


Standardized automata

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a binary completely reachable automaton. The automata \mathcal{A} is called standardized, if there exists a state $r \neq 0$ such that $0 . a=r$.a.
Let H_{1} be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $\left\{0 . a^{k}: 1 \leq k \leq n\right\}$.

- [David Casas and Mikhail Volkov ${ }^{6}, 2023+$] Let \mathcal{A} be a standardized automata. If $H_{1}=\left(\mathbb{Z}_{n}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
- [Z., 2023+] Let \mathcal{A} be a standardized automata. If $H_{1} \cong\left(\mathbb{Z}_{n / 2}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
- [Z., 2023+] Let \mathcal{A} be a standardized automata. For a non-empty subset $S \subseteq \mathbb{Z}_{n}$, S is reachable by a word of length $\leq n(n-|S|)+n-1$.

Standardized automata

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a binary completely reachable automaton. The automata \mathcal{A} is called standardized, if there exists a state $r \neq 0$ such that $0 . a=r . a$. Let H_{1} be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $\left\{0 . a^{k}: 1 \leq k \leq n\right\}$.

- [David Casas and Mikhail Volkov ${ }^{6}, 2023+$] Let \mathcal{A} be a standardized automata. If $H_{1}=\left(\mathbb{Z}_{n}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
- [Z., 2023+] Let \mathcal{A} be a standardized automata. If $H_{1} \cong\left(\mathbb{Z}_{n / 2}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
- [Z., 2023+] Let \mathcal{A} be a standardized automata. For a non-empty subset $S \subseteq \mathbb{Z}_{n}$, S is reachable by a word of length $\leq n(n-|S|)+n-1$

[^12]
Standardized automata

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a binary completely reachable automaton. The automata \mathcal{A} is called standardized, if there exists a state $r \neq 0$ such that $0 . a=r . a$.
Let H_{1} be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $\left\{0 . a^{k}: 1 \leq k \leq n\right\}$.

- [David Casas and Mikhail Volkov ${ }^{6}, 2023+$] Let \mathcal{A} be a standardized automata. If $H_{1}=\left(\mathbb{Z}_{n}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
- [Z., 2023+] Let \mathcal{A} be a standardized automata. If $H_{1} \cong\left(\mathbb{Z}_{n / 2}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
$\Rightarrow[Z ., 2023+]$ Let \mathcal{A} be a standardized automata. For a non-empty subset $S \subseteq \mathbb{Z}_{n}$, S is reachable by a word of length $\leq n(n-|S|)+n-1$.

[^13]
Standardized automata

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a binary completely reachable automaton. The automata \mathcal{A} is called standardized, if there exists a state $r \neq 0$ such that $0 . a=r . a$.
Let H_{1} be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $\left\{0 . a^{k}: 1 \leq k \leq n\right\}$.

- [David Casas and Mikhail Volkov ${ }^{6}, 2023+$] Let \mathcal{A} be a standardized automata. If $H_{1}=\left(\mathbb{Z}_{n}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
- [Z., 2023+] Let \mathcal{A} be a standardized automata. If $H_{1} \cong\left(\mathbb{Z}_{n / 2}, \oplus\right)$ then \mathcal{A} fulfills Don's Conjecture.
- [Z., 2023+] Let \mathcal{A} be a standardized automata. For a non-empty subset $S \subseteq \mathbb{Z}_{n}, S$ is reachable by a word of length $\leq n(n-|S|)+n-1$.

[^14]
Expandable

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be an n-state DFA and S a subset of Q.
$\Rightarrow A$ word w over Σ expands S if there exists a set R such that R.w $=S$ and $|R|>|S|$

- A proper non-empty subset of Q is said to be k-expandable if it can be expanded by a word of length at most k.
- If every proper non-empty subset of Q is n-expandable, then the DFA \mathcal{A} fulfills Don's Conjecture.
- There exists a standradized DFA and a subset of states such that the subset is not n-expandable in the DFA.

Expandable

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be an n-state DFA and S a subset of Q.

- A word wover Σ expands S if there exists a set R such that $R . w=S$ and $|R|>|S|$.
- A proper non-empty subset of Q is said to be k-expandable if it can be expanded by a word of length at most k.
- If every proper non-empty subset of Q is n-expandable, then the DFA \mathcal{A} fulfills Don's Conjecture.
- There exists a standradized DFA and a subset of states such that the subset is not n-expandable in the DFA.

Expandable

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be an n-state DFA and S a subset of Q.

- A word wover Σ expands S if there exists a set R such that $R . w=S$ and $|R|>|S|$.
- A proper non-empty subset of Q is said to be k-expandable if it can be expanded by a word of length at most k.
- If every proper non-empty subset of Q is n-expandable, then the DFA \mathcal{A} fulfills Don's Conjecture.
- There exists a standradized DFA and a subset of states such that the subset is not n-expandable in the DFA.

Expandable

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be an n-state DFA and S a subset of Q.

- A word wover Σ expands S if there exists a set R such that $R . w=S$ and $|R|>|S|$.
- A proper non-empty subset of Q is said to be k-expandable if it can be expanded by a word of length at most k.
- If every proper non-empty subset of Q is n-expandable, then the DFA \mathcal{A} fulfills Don's Conjecture.
\Rightarrow There exists a standradized DFA and a subset of states such that the subset is not n-expandable in the DFA.

Expandable

Let $\mathcal{A}=(Q, \Sigma, \delta)$ be an n-state DFA and S a subset of Q.

- A word wover Σ expands S if there exists a set R such that $R . w=S$ and $|R|>|S|$.
- A proper non-empty subset of Q is said to be k-expandable if it can be expanded by a word of length at most k.
- If every proper non-empty subset of Q is n-expandable, then the DFA \mathcal{A} fulfills Don's Conjecture.
- There exists a standradized DFA and a subset of states such that the subset is not n-expandable in the DFA.

A sequence of subgroups

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a standardized DFA. For a subgroup H of $\left(\mathbb{Z}_{n}, \oplus\right)$, define $U(\mathcal{A}, H)=\left\{i \in\left\{1, \ldots, \frac{n}{|H|}-1\right\}: H . a^{k} \cap(H \oplus i) \neq \emptyset, k \geq 1\right\}$.
Since \mathcal{A} is completely reachable, $U(\mathcal{A}, H)$ is non-empty.

- Define H_{0} to the trivial subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$.
- For an integer $i \geq 1$ such that $H_{i-1} \neq\left(\mathbb{Z}_{n}, \oplus\right)$, define H_{i} to be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $H_{i-1} \cup \cup\left(\mathcal{A}, H_{i-1}\right)$.
- We obtain a sequence of subgroups

$$
\{0\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{l}=\left(\mathbb{Z}_{n}, \oplus\right) .
$$

- Observe that $\ell \leq \Omega(n)$, where $\Omega(n)$ is the number of prime factors of n with multiplicity.

A sequence of subgroups

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a standardized DFA. For a subgroup H of $\left(\mathbb{Z}_{n}, \oplus\right)$, define $U(\mathcal{A}, H)=\left\{i \in\left\{1, \ldots, \frac{n}{|H|}-1\right\}: H . a^{k} \cap(H \oplus i) \neq \emptyset, k \geq 1\right\}$. Since \mathcal{A} is completely reachable, $U(\mathcal{A}, H)$ is non-empty.

- Define H_{0} to the trivial subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$.
- For an integer $i \geq 1$ such that $H_{i-1} \neq\left(\mathbb{Z}_{n}, \oplus\right)$, define H_{i} to be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $H_{i-1} \cup \cup\left(\mathcal{A}, H_{i-1}\right)$.
- We obtain a sequence of subgroups

$$
\{0\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{\ell}=\left(\mathbb{Z}_{n}, \oplus\right) .
$$

- Observe that $\ell \leq \Omega(n)$, where $\Omega(n)$ is the number of prime factors of n with multiplicity.

A sequence of subgroups

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a standardized DFA. For a subgroup H of $\left(\mathbb{Z}_{n}, \oplus\right)$, define $U(\mathcal{A}, H)=\left\{i \in\left\{1, \ldots, \frac{n}{|H|}-1\right\}: H . a^{k} \cap(H \oplus i) \neq \emptyset, k \geq 1\right\}$.
Since \mathcal{A} is completely reachable, $U(\mathcal{A}, H)$ is non-empty.

- Define H_{0} to the trivial subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$.
- For an integer $i \geq 1$ such that $H_{i-1} \neq\left(\mathbb{Z}_{n}, \oplus\right)$, define H_{i} to be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $H_{i-1} \cup \cup\left(\mathcal{A}, H_{i-1}\right)$.
- We obtain a sequence of subgroups

$$
\{0\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{\ell}=\left(\mathbb{Z}_{n}, \oplus\right) .
$$

- Observe that $\ell \leq \Omega(n)$, where $\Omega(n)$ is the number of prime factors of n with multiplicity.

A sequence of subgroups

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a standardized DFA. For a subgroup H of $\left(\mathbb{Z}_{n}, \oplus\right)$, define $U(\mathcal{A}, H)=\left\{i \in\left\{1, \ldots, \frac{n}{|H|}-1\right\}: H . a^{k} \cap(H \oplus i) \neq \emptyset, k \geq 1\right\}$.
Since \mathcal{A} is completely reachable, $U(\mathcal{A}, H)$ is non-empty.

- Define H_{0} to the trivial subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$.
- For an integer $i \geq 1$ such that $H_{i-1} \neq\left(\mathbb{Z}_{n}, \oplus\right)$, define H_{i} to be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $H_{i-1} \cup U\left(\mathcal{A}, H_{i-1}\right)$.
- We obtain a sequence of subgroups

$$
\{0\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{\ell}=\left(\mathbb{Z}_{n}, \oplus\right) .
$$

- Observe that $\ell \leq \Omega(n)$, where $\Omega(n)$ is the number of prime factors of n with multiplicity.

A sequence of subgroups

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a standardized DFA. For a subgroup H of $\left(\mathbb{Z}_{n}, \oplus\right)$, define $U(\mathcal{A}, H)=\left\{i \in\left\{1, \ldots, \frac{n}{|H|}-1\right\}: H . a^{k} \cap(H \oplus i) \neq \emptyset, k \geq 1\right\}$.
Since \mathcal{A} is completely reachable, $U(\mathcal{A}, H)$ is non-empty.

- Define H_{0} to the trivial subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$.
- For an integer $i \geq 1$ such that $H_{i-1} \neq\left(\mathbb{Z}_{n}, \oplus\right)$, define H_{i} to be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $H_{i-1} \cup U\left(\mathcal{A}, H_{i-1}\right)$.
- We obtain a sequence of subgroups

$$
\{0\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{\ell}=\left(\mathbb{Z}_{n}, \oplus\right) .
$$

- Observe that $\ell \leq \Omega(n)$, where $\Omega(n)$ is the number of prime factors of n with multiplicity.

A sequence of subgroups

Let $\mathcal{A}=\left(\mathbb{Z}_{n},\{a, b\}, \delta\right)$ be a standardized DFA. For a subgroup H of $\left(\mathbb{Z}_{n}, \oplus\right)$, define $U(\mathcal{A}, H)=\left\{i \in\left\{1, \ldots, \frac{n}{|H|}-1\right\}: H . a^{k} \cap(H \oplus i) \neq \emptyset, k \geq 1\right\}$.
Since \mathcal{A} is completely reachable, $U(\mathcal{A}, H)$ is non-empty.

- Define H_{0} to the trivial subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$.
- For an integer $i \geq 1$ such that $H_{i-1} \neq\left(\mathbb{Z}_{n}, \oplus\right)$, define H_{i} to be the subgroup of $\left(\mathbb{Z}_{n}, \oplus\right)$ generated by $H_{i-1} \cup \cup\left(\mathcal{A}, H_{i-1}\right)$.
- We obtain a sequence of subgroups

$$
\{0\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{\ell}=\left(\mathbb{Z}_{n}, \oplus\right) .
$$

- Observe that $\ell \leq \Omega(n)$, where $\Omega(n)$ is the number of prime factors of n with multiplicity.

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline
Outline of our proof:
\rightarrow Write a_{i} for $\frac{n}{\prod_{i}}$. Let $S \subseteq \mathbb{Z}_{n}$. And define $m(S)$ be the integer m such that S is not a union of H_{m}-cosets and is a union of H_{m-1}-cosets.

- There exists a word w of length $\leq q_{m(S)-1}$ such that $R . w=S$ and either $|R|>|S|$ or $m(R)<m(S)$
\rightarrow Moreover, if $0 \notin S$, then we can improve the estimate of the length of w to $|w| \leq q_{m(S)-1}-q_{m(S)}+1$.
- Then, for every non-empty proper subset S, there exists an expanding word for S of length $\leq n+m(S)$.
- By connecting some expanding words, we can get a word w^{\prime} of length $\leq n(n-|S|)+n-1$ such that $\mathbb{Z}_{n} \cdot w^{\prime}=S$.

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline. Outline of our proof:
$\begin{aligned} & \text { Write } q_{i} \text { for } \frac{n}{\left|H_{i}\right|} \text {. Let } S \subseteq \mathbb{Z}_{n} \text {. And define } m(S) \text { be the integer } m \text { such that } S \text { is } \\ & \text { not a union of } H_{m} \text {-cosets and is a union of } H_{m-1} \text {-cosets. } \\ & \text { There exists a word } w \text { of length } \leq q_{m(S)-1} \text { such that } R \text {. } w=S \text { and either } \\ & |R|>|S| \text { or } m(R)<m(S) \text {. } \\ > & \text { Moreover, if } 0 \notin S \text {, then we can improve the estimate of the length of } w \text { to } \\ & |w| \leq q_{m(S)-1}-q_{m(S)}+1 \text {. } \\ > & \text { Then, for every non-empty proper subset } S \text {, there exists an expanding word for } S \\ & \text { of length } \leq n+m(S) \text {. } \\ > & \text { By connecting some expanding words, we can get a word } w^{\prime} \text { of length } \\ & \leq n(n-|S|)+n-1 \text { such that } \mathbb{Z}_{n} \cdot w^{\prime}=S .\end{aligned}$

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline. Outline of our proof:

- Write q_{i} for $\frac{n}{\left|H_{i}\right|}$. Let $S \subseteq \mathbb{Z}_{n}$. And define $m(S)$ be the integer m such that S is not a union of H_{m}-cosets and is a union of H_{m-1}-cosets
- There exists a word w of length $\leq q_{m(S)-1}$ such that $R . w=S$ and either $|R|>|S|$ or $m(R)<m(S)$.
\rightarrow Moreover, if $0 \notin S$, then we can improve the estimate of the length of w to $|w| \leq q_{m(S)-1}-q_{m(S)}+1$.
- Then, for every non-empty proper subset S, there exists an expanding word for S of length $\leq n+m(S)$
- By connecting some expanding words, we can get a word w^{\prime} of length $\leq n(n-|S|)+n-1$ such that $\mathbb{Z}_{n} \cdot w^{\prime}=S$.

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline. Outline of our proof:

- Write q_{i} for $\frac{n}{\left|H_{i}\right|}$. Let $S \subseteq \mathbb{Z}_{n}$. And define $m(S)$ be the integer m such that S is not a union of H_{m}-cosets and is a union of H_{m-1}-cosets.
$\begin{aligned} & \text { There exists a word } w \text { of length } \leq q_{m(S)-1} \text { such that } R . w=S \text { and either } \\ & |R|>|S| \text { or } m(R)<m(S) \text {. } \\ > & \text { Moreover, if } 0 \notin S \text {, then we can improve the estimate of the length of } w \text { to } \\ & |w| \leq q_{m(S)-1}-q_{m(S)}+1 \text {. } \\ > & \text { Then, for every non-empty proper subset } S \text {, there exists an expanding word for } S \\ & \text { of length } \leq n+m(S) \text {. } \\ > & \text { By connecting some expanding words, we can get a word } w^{\prime} \text { of length } \\ & \leq n(n-|S|)+n-1 \text { such that } \mathbb{Z}_{n} \cdot w^{\prime}=S .\end{aligned}$

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline. Outline of our proof:

- Write q_{i} for $\frac{n}{\left|H_{i}\right|}$. Let $S \subseteq \mathbb{Z}_{n}$. And define $m(S)$ be the integer m such that S is not a union of H_{m}-cosets and is a union of H_{m-1}-cosets.
- There exists a word w of length $\leq q_{m(S)-1}$ such that R.w $=S$ and either $|R|>|S|$ or $m(R)<m(S)$.
- Moreover, if $0 \notin S$, then we can improve the estimate of the length of w to $|w| \leq q_{m(S)-1}-q_{m(S)}+1$.
- Then, for every non-empty proper subset S, there exists an expanding word for S of length $\leq n+m(S)$.
- By connecting some expanding words, we can get a word w' of length $\leq n(n-|S|)+n-1$ such that $\mathbb{Z}_{n} \cdot w^{\prime}=S$.

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline. Outline of our proof:

- Write q_{i} for $\frac{n}{\left|H_{i}\right|}$. Let $S \subseteq \mathbb{Z}_{n}$. And define $m(S)$ be the integer m such that S is not a union of H_{m}-cosets and is a union of H_{m-1}-cosets.
- There exists a word w of length $\leq q_{m(S)-1}$ such that $R . w=S$ and either $|R|>|S|$ or $m(R)<m(S)$.
- Moreover, if $0 \notin S$, then we can improve the estimate of the length of w to $|w| \leq q_{m(S)-1}-q_{m(S)}+1$.
- Then, for every non-empty proper subset S, there exists an expanding word for S of length $\leq n+m(S)$.
- By connecting some expanding words, we can get a word w^{\prime} of length $\leq n(n-|S|)+n-1$ such that $\mathbb{Z}_{n} \cdot w^{\prime}=S$.

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline.
Outline of our proof:

- Write q_{i} for $\frac{n}{\left|H_{i}\right|}$. Let $S \subseteq \mathbb{Z}_{n}$. And define $m(S)$ be the integer m such that S is not a union of H_{m}-cosets and is a union of H_{m-1}-cosets.
- There exists a word w of length $\leq q_{m(S)-1}$ such that $R . w=S$ and either $|R|>|S|$ or $m(R)<m(S)$.
- Moreover, if $0 \notin S$, then we can improve the estimate of the length of w to $|w| \leq q_{m(S)-1}-q_{m(S)}+1$.
- Then, for every non-empty proper subset S, there exists an expanding word for S of length $\leq n+m(S)$.
- By connecting some expanding words, we can get a word w^{\prime} of length $\leq n(n-|S|)+n-1$ such that $\mathbb{Z}_{n} \cdot w^{\prime}=S$.

Outline of our proof

Theorem (Z., 2023+)
Let $\mathcal{A}=\left(\mathbb{Z}_{n}, \Sigma, \delta\right)$ be a standardized automata. For a non-empty subset S, S is reachable by a word of length $\leq n(n-k)+n-1$.
There are some minor differences between the real proof and the following outline.
Outline of our proof:

- Write q_{i} for $\frac{n}{\left|H_{i}\right|}$. Let $S \subseteq \mathbb{Z}_{n}$. And define $m(S)$ be the integer m such that S is not a union of H_{m}-cosets and is a union of H_{m-1}-cosets.
- There exists a word w of length $\leq q_{m(S)-1}$ such that $R . w=S$ and either $|R|>|S|$ or $m(R)<m(S)$.
- Moreover, if $0 \notin S$, then we can improve the estimate of the length of w to $|w| \leq q_{m(S)-1}-q_{m(S)}+1$.
- Then, for every non-empty proper subset S, there exists an expanding word for S of length $\leq n+m(S)$.
- By connecting some expanding words, we can get a word w^{\prime} of length $\leq n(n-|S|)+n-1$ such that $\mathbb{Z}_{n} \cdot w^{\prime}=S$.

Restricted Cayley digraph

Let k be a positive integer. Write $[k]$ for $\{1, \ldots, k\}$.

- A [k]-graded set (X, f) is a set X together with a function $f: X \rightarrow[k]$.
\rightarrow Let X be a subset of a group G, the Cayley digraph of G with respect to X, denoted $\operatorname{Cay}(G, X)$, has G as its vertex set and $\{(g, g x): g \in G, x \in X\}$ as its edge set.
\Rightarrow If $G=\mathbb{Z}_{n}$ is a cyclic group and (X, f) is [k]-graded set, the restricted Cayley digraph $\mathcal{R}(G, X, f)$ of \mathbb{Z}_{n} with respect to (X, f) has G as its vertex set and $\{(g, g x): g \in G, x \in X, g+f(x) \leq n\}$ as its edge set.

Lemma

Let $G=\left(\mathbb{Z}_{n}, \oplus\right)$. Let (X, f) be a $[k]$-graded set. If f is a surjective map, then the strongly connected components of $\mathcal{R}(G, X, f)$ have the cosets of $\langle X\rangle$ as their vertex sets.

Restricted Cayley digraph

Let k be a positive integer. Write $[k]$ for $\{1, \ldots, k\}$.

- A [k]-graded set (X, f) is a set X together with a function $f: X \rightarrow[k]$.
- Let X be a subset of a group G, the Cayley digraph of G with respect to X, denoted $\operatorname{Cay}(G, X)$, has G as its vertex set and $\{(g, g x): g \in G, x \in X\}$ as its edge set.
\rightarrow If $G=\mathbb{Z}_{n}$ is a cyclic group and (X, f) is $[k]$-graded set, the restricted Cayley digraph $\mathcal{R}(G, X, f)$ of \mathbb{Z}_{n} with respect to (X, f) has G as its vertex set and $\{(g, g x): g \in G, x \in X, g+f(x)<n\}$ as its edge set.

Lemma
Let $G=\left(Z_{n}, \oplus\right)$. Let (X, f) be a $[k]$-graded set. If f is a surjective map, then the strongly connected components of $\mathcal{R}(G, X, f)$ have the cosets of $\langle X\rangle$ as their vertex sets.

Restricted Cayley digraph

Let k be a positive integer. Write $[k]$ for $\{1, \ldots, k\}$.

- A [k]-graded set (X, f) is a set X together with a function $f: X \rightarrow[k]$.
- Let X be a subset of a group G, the Cayley digraph of G with respect to X, denoted $\operatorname{Cay}(G, X)$, has G as its vertex set and $\{(g, g x): g \in G, x \in X\}$ as its edge set.
- If $G=\mathbb{Z}_{n}$ is a cyclic group and (X, f) is [$\left.k\right]$-graded set, the restricted Cayley digraph $\mathcal{R}(G, X, f)$ of \mathbb{Z}_{n} with respect to (X, f) has G as its vertex set and $\{(g, g x): g \in G, x \in X, g+f(x) \leq n\}$ as its edge set.

Lemma
Let $G=\left(\mathbb{Z}_{n}, \oplus\right)$. Let (X, f) be a $[k]$-graded set. If f is a surjective map, then the
strongly connected components of $\mathcal{R}(G, X, f)$ have the cosets of $\langle X\rangle$ as their vertex sets.
This lemma is a corollarv of [Proposition 5, ${ }^{7}$]

Restricted Cayley digraph

Let k be a positive integer. Write $[k]$ for $\{1, \ldots, k\}$.

- A [k]-graded set (X, f) is a set X together with a function $f: X \rightarrow[k]$.
- Let X be a subset of a group G, the Cayley digraph of G with respect to X, denoted $\operatorname{Cay}(G, X)$, has G as its vertex set and $\{(g, g x): g \in G, x \in X\}$ as its edge set.
- If $G=\mathbb{Z}_{n}$ is a cyclic group and (X, f) is [$\left.k\right]$-graded set, the restricted Cayley digraph $\mathcal{R}(G, X, f)$ of \mathbb{Z}_{n} with respect to (X, f) has G as its vertex set and $\{(g, g x): g \in G, x \in X, g+f(x) \leq n\}$ as its edge set.

Lemma
Let $G=\left(\mathbb{Z}_{n}, \oplus\right)$. Let (X, f) be a $[k]$-graded set. If f is a surjective map, then the strongly connected components of $\mathcal{R}(G, X, f)$ have the cosets of $\langle X\rangle$ as their vertex sets.
This lemma is a corollary of [Proposition 5, ${ }^{7}$]

Restricted Cayley digraph

Let k be a positive integer. Write $[k]$ for $\{1, \ldots, k\}$.

- A [k]-graded set (X, f) is a set X together with a function $f: X \rightarrow[k]$.
- Let X be a subset of a group G, the Cayley digraph of G with respect to X, denoted $\operatorname{Cay}(G, X)$, has G as its vertex set and $\{(g, g x): g \in G, x \in X\}$ as its edge set.
- If $G=\mathbb{Z}_{n}$ is a cyclic group and (X, f) is [$\left.k\right]$-graded set, the restricted Cayley digraph $\mathcal{R}(G, X, f)$ of \mathbb{Z}_{n} with respect to (X, f) has G as its vertex set and $\{(g, g x): g \in G, x \in X, g+f(x) \leq n\}$ as its edge set.

Lemma
Let $G=\left(\mathbb{Z}_{n}, \oplus\right)$. Let (X, f) be a $[k]$-graded set. If f is a surjective map, then the strongly connected components of $\mathcal{R}(G, X, f)$ have the cosets of $\langle X\rangle$ as their vertex sets.
This lemma is a corollary of [Proposition 5, ${ }^{7}$].
${ }^{7}$ David Casas и Mikhail V. Volkov (2023). Don's conjecture for binary completely reachable automata: an approach and its limitations. arXiv: 2311.00077 [cs.FL].

Lemma
Let \mathcal{A} is a standardize DFA. Let S be proper non-empty subset of \mathbb{Z}_{n}. Then there exists a word w of length $\leq q_{m(S)-1}$ satisfying one of the following conditions:

1. $|R|>|S|$;
2. $0 \notin R$ and $H_{m-1} \cap R=\neq \emptyset$ which imply $m(R)<m(S)$.

Proof

- Set $G:=\left(\mathbb{Z}_{n}, \oplus\right) / H_{m-1}, X=\left\{H_{m-1} \oplus j: j \in U\left(\mathcal{A}, H_{m-1}\right)\right\}$ and $f\left(H_{m-1} \oplus j\right)$ to be the least integer k such that $H_{m-1} \cdot a^{k} \cap\left(H_{m-1} \oplus j\right) \neq \emptyset$.
$\Rightarrow \ln \mathcal{R}(G, X, f)$, there exists a strongly connected component $C=H_{m} \oplus t$ such that $C \cap S \notin\{\emptyset, C\}$. (Regard C and S as sets of H_{m-1}-cosets.)
- Take two vertices $L=H_{m-1} \oplus p \in C \backslash S$ and $L^{\prime}=H_{m-1} \oplus p^{\prime} \in C \cap S$ such that (L, L^{\prime}) is an edge of $\mathcal{R}(G, X, f)$
- One can check that $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ is a word satisfying our requirements.

Lemma

Let \mathcal{A} is a standardize DFA. Let S be proper non-empty subset of \mathbb{Z}_{n}. Then there exists a word w of length $\leq q_{m(S)-1}$ satisfying one of the following conditions:

1. $|R|>|S|$;
2. $0 \notin R$ and $H_{m-1} \cap R=\neq \emptyset$ which imply $m(R)<m(S)$.

Proof:

- Set $G:=\left(\mathbb{Z}_{n}, \oplus\right) / H_{m-1}, X=\left\{H_{m-1} \oplus j: j \in U\left(\mathcal{A}, H_{m-1}\right)\right\}$ and $f\left(H_{m-1} \oplus j\right)$ to be the least integer k such that $H_{m-1} \cdot a^{k} \cap\left(H_{m-1} \oplus j\right) \neq \emptyset$.
$>\ln \mathcal{R}(G, X, f)$, there exists a strongly connected component $C=H_{m} \oplus t$ such that $C \cap S \notin\{\emptyset, C\}$. (Regard C and S as sets of H_{m-1}-cosets.)
- Take two vertices $L=H_{m-1} \oplus p \in C \backslash S$ and $L^{\prime}=H_{m-1} \oplus p^{\prime} \in C \cap S$ such that $\left(L, L^{\prime}\right)$ is an edge of $\mathcal{R}(G, X, f)$.
- One can check that $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ is a word satisfying our requirements.

Lemma

Let \mathcal{A} is a standardize DFA. Let S be proper non-empty subset of \mathbb{Z}_{n}. Then there exists a word w of length $\leq q_{m(S)-1}$ satisfying one of the following conditions:

1. $|R|>|S|$;
2. $0 \notin R$ and $H_{m-1} \cap R=\neq \emptyset$ which imply $m(R)<m(S)$.

Proof:

- Set $G:=\left(\mathbb{Z}_{n}, \oplus\right) / H_{m-1}, X=\left\{H_{m-1} \oplus j: j \in U\left(\mathcal{A}, H_{m-1}\right)\right\}$ and $f\left(H_{m-1} \oplus j\right)$ to be the least integer k such that $H_{m-1} \cdot a^{k} \cap\left(H_{m-1} \oplus j\right) \neq \emptyset$.
- In $\mathcal{R}(G, X, f)$, there exists a strongly connected component $C=H_{m} \oplus t$ such that $C \cap S \notin\{\emptyset, C\}$. (Regard C and S as sets of H_{m-1}-cosets.)
\Rightarrow Take two vertices $L=H_{m-1} \oplus p \in C \backslash S$ and $L^{\prime}=H_{m-1} \oplus p^{\prime} \in C \cap S$ such that (L, L^{\prime}) is an edge of $\mathcal{R}(G, X, f)$.
- One can check that $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ is a word satisfying our requirements.

Lemma

Let \mathcal{A} is a standardize DFA. Let S be proper non-empty subset of \mathbb{Z}_{n}. Then there exists a word w of length $\leq q_{m(S)-1}$ satisfying one of the following conditions:

1. $|R|>|S|$;
2. $0 \notin R$ and $H_{m-1} \cap R=\neq \emptyset$ which imply $m(R)<m(S)$.

Proof:

- Set $G:=\left(\mathbb{Z}_{n}, \oplus\right) / H_{m-1}, X=\left\{H_{m-1} \oplus j: j \in U\left(\mathcal{A}, H_{m-1}\right)\right\}$ and $f\left(H_{m-1} \oplus j\right)$ to be the least integer k such that $H_{m-1} \cdot a^{k} \cap\left(H_{m-1} \oplus j\right) \neq \emptyset$.
$-\operatorname{In} \mathcal{R}(G, X, f)$, there exists a strongly connected component $C=H_{m} \oplus t$ such that $C \cap S \notin\{\emptyset, C\}$. (Regard C and S as sets of H_{m-1}-cosets.)
- Take two vertices $L=H_{m-1} \oplus p \in C \backslash S$ and $L^{\prime}=H_{m-1} \oplus p^{\prime} \in C \cap S$ such that (L, L^{\prime}) is an edge of $\mathcal{R}(G, X, f)$.
\Rightarrow One can check that $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ is a word satisfying our requirements.

Lemma

Let \mathcal{A} is a standardize DFA. Let S be proper non-empty subset of \mathbb{Z}_{n}. Then there exists a word w of length $\leq q_{m(S)-1}$ satisfying one of the following conditions:

1. $|R|>|S|$;
2. $0 \notin R$ and $H_{m-1} \cap R=\neq \emptyset$ which imply $m(R)<m(S)$.

Proof:

- Set $G:=\left(\mathbb{Z}_{n}, \oplus\right) / H_{m-1}, X=\left\{H_{m-1} \oplus j: j \in U\left(\mathcal{A}, H_{m-1}\right)\right\}$ and $f\left(H_{m-1} \oplus j\right)$ to be the least integer k such that $H_{m-1} \cdot a^{k} \cap\left(H_{m-1} \oplus j\right) \neq \emptyset$.
$-\operatorname{In} \mathcal{R}(G, X, f)$, there exists a strongly connected component $C=H_{m} \oplus t$ such that $C \cap S \notin\{\emptyset, C\}$. (Regard C and S as sets of H_{m-1}-cosets.)
- Take two vertices $L=H_{m-1} \oplus p \in C \backslash S$ and $L^{\prime}=H_{m-1} \oplus p^{\prime} \in C \cap S$ such that (L, L^{\prime}) is an edge of $\mathcal{R}(G, X, f)$.
- One can check that $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ is a word satisfying our requirements.

In the case that $0 \notin S$ and $H_{m(S)} \cap S \neq \emptyset$,

- Consider S. $b^{q_{m}-1}$.
\rightarrow Applying the arguments in the last slides for $S . b^{q_{m-1}}$, we can obtain a word $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ satisfying our requirements with respect to S. $b^{q_{m}-1}$.
- We can prove that $p>a_{m}-1$. So the word $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p-q_{m}+1}$ satifies our requirements with respect to S and its length is at most $q_{m-1}-q_{m}+1$.

In the case that $0 \notin S$ and $H_{m(S)} \cap S \neq \emptyset$,

- Consider S. $b^{q_{m}-1}$.
- Applying the arguments in the last slides for $S . b^{q_{m}-1}$, we can obtain a word $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ satisfying our requirements with respect to S. $b^{q_{m}-1}$.

\Rightarrow We can prove that $p \geq q_{m}-1$. So the word $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p-q_{m}+1}$ satifies our requirements with respect to S and its length is at most $q_{m-1}-q_{m}+1$.

In the case that $0 \notin S$ and $H_{m(S)} \cap S \neq \emptyset$,

- Consider S. $b^{q_{m}-1}$.
- Applying the arguments in the last slides for $S . b^{q_{m}-1}$, we can obtain a word $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p}$ satisfying our requirements with respect to S. $b^{q_{m}-1}$.
- We can prove that $p \geq q_{m}-1$. So the word $a^{f\left(H_{m-1} \oplus\left(p^{\prime}-p\right)\right)} b^{p-q_{m}+1}$ satifies our requirements with respect to S and its length is at most $q_{m-1}-q_{m}+1$.

Using the above lemma successively, we obtain

$$
S_{k} \xrightarrow{w_{k-1}} S_{k-1} \xrightarrow{w_{k-2}} \cdots \xrightarrow{w_{1}} S_{1} \xrightarrow{w_{0}} S_{0}=S
$$

such that $\left|S_{k}\right|>|S|$ and

$$
\left|w_{0}\right| \leq q_{m(}\left(s_{0}\right)-1 . \quad \text { for every } i \in[k-1] .
$$

Since $m\left(S_{i}\right)-1 \geq m\left(S_{i+1}\right)$, we have $q_{m\left(S_{i}\right)-1} \leq q_{m\left(S_{i+1}\right)}$ for all $i>0$.

We say that the word u "meet" a subgroup H_{m} if there exists S_{i} such that $m\left(S_{i}\right)=m$. It is clear that $|u| \leq n+($ the number of subgroups met by $u)-1$.

Using the above lemma successively, we obtain

$$
S_{k} \xrightarrow{w_{k-1}} S_{k-1} \xrightarrow{w_{k-2}} \cdots \xrightarrow{w_{1}} S_{1} \xrightarrow{w_{0}} S_{0}=S
$$

such that $\left|S_{k}\right|>|S|$ and

$$
\begin{aligned}
& \left|w_{0}\right| \leq q_{m\left(S_{0}\right)-1} \\
& \left|w_{i}\right| \leq q_{m\left(S_{i}\right)-1}-q_{m\left(S_{i}\right)}+1 \quad \text { for every } i \in[k-1] .
\end{aligned}
$$

Since $m\left(S_{i}\right)-1 \geq m\left(S_{i+1}\right)$, we have $q_{m\left(S_{i}\right)-1} \leq q_{m\left(S_{i+1}\right)}$ for all $i>0$.
Let $u=w_{k-1} \cdots w_{2} w_{1}$. Hence we have $|u| \leq q_{m\left(S_{k-1}\right)}+k-1 \leq n+m(S)$.
We say that the word u "meet" a subgroup H_{m} if there exists S_{i} such that $m\left(S_{i}\right)=m$ It is clear that $|u| \leq n+($ the number of subgroups met by $u)-1$.

Using the above lemma successively, we obtain

$$
S_{k} \xrightarrow{w_{k-1}} S_{k-1} \xrightarrow{w_{k-2}} \cdots \xrightarrow{w_{1}} S_{1} \xrightarrow{w_{0}} S_{0}=S
$$

such that $\left|S_{k}\right|>|S|$ and

$$
\begin{aligned}
& \left|w_{0}\right| \leq q_{m\left(S_{0}\right)-1} \\
& \left|w_{i}\right| \leq q_{m\left(S_{i}\right)-1}-q_{m\left(S_{i}\right)}+1 \quad \text { for every } i \in[k-1]
\end{aligned}
$$

Since $m\left(S_{i}\right)-1 \geq m\left(S_{i+1}\right)$, we have $q_{m\left(S_{i}\right)-1} \leq q_{m\left(S_{i+1}\right)}$ for all $i>0$.
Let $u=w_{k-1} \cdots w_{2} w_{1}$. Hence we have $|u| \leq q_{m\left(S_{k-1}\right)}+k-1 \leq n+m(S)$ We say that the word u "meet" a subgroup H_{m} if there exists S_{i} such that $m\left(S_{i}\right)=m$ It is clear that $|u| \leq n+($ the number of subgroups met by $u)-1$.

Using the above lemma successively, we obtain

$$
S_{k} \xrightarrow{w_{k-1}} S_{k-1} \xrightarrow{w_{k-2}} \cdots \xrightarrow{w_{1}} S_{1} \xrightarrow{w_{0}} S_{0}=S
$$

such that $\left|S_{k}\right|>|S|$ and

$$
\begin{aligned}
& \left|w_{0}\right| \leq q_{m\left(S_{0}\right)-1} \\
& \left|w_{i}\right| \leq q_{m\left(S_{i}\right)-1}-q_{m\left(S_{i}\right)}+1 \quad \text { for every } i \in[k-1]
\end{aligned}
$$

Since $m\left(S_{i}\right)-1 \geq m\left(S_{i+1}\right)$, we have $q_{m\left(S_{i}\right)-1} \leq q_{m\left(S_{i+1}\right)}$ for all $i>0$. Let $u=w_{k-1} \cdots w_{2} w_{1}$. Hence we have $|u| \leq q_{m\left(S_{k-1}\right)}+k-1 \leq n+m(S)$.
We say that the word u "meet" a subgroup H_{m} if there exists S_{i} such that $m\left(S_{i}\right)=m$ It is clear that $|u| \leq n+($ the number of subgroups met by $u)-1$

Using the above lemma successively, we obtain

$$
S_{k} \xrightarrow{w_{k-1}} S_{k-1} \xrightarrow{w_{k-2}} \cdots \xrightarrow{w_{1}} S_{1} \xrightarrow{w_{0}} S_{0}=S
$$

such that $\left|S_{k}\right|>|S|$ and

$$
\begin{aligned}
& \left|w_{0}\right| \leq q_{m\left(S_{0}\right)-1} \\
& \left|w_{i}\right| \leq q_{m\left(S_{i}\right)-1}-q_{m\left(S_{i}\right)}+1 \quad \text { for every } i \in[k-1] .
\end{aligned}
$$

Since $m\left(S_{i}\right)-1 \geq m\left(S_{i+1}\right)$, we have $q_{m\left(S_{i}\right)-1} \leq q_{m\left(S_{i+1}\right)}$ for all $i>0$. Let $u=w_{k-1} \cdots w_{2} w_{1}$. Hence we have $|u| \leq q_{m\left(S_{k-1}\right)}+k-1 \leq n+m(S)$. We say that the word u "meet" a subgroup H_{m} if there exists S_{i} such that $m\left(S_{i}\right)=m$. It is clear that $|u| \leq n+($ the number of subgroups met by $u)-1$.

Using the above lemma successively, we obtain

$$
S_{k} \xrightarrow{w_{k-1}} S_{k-1} \xrightarrow{w_{k-2}} \cdots \xrightarrow{w_{1}} S_{1} \xrightarrow{w_{0}} S_{0}=S
$$

such that $\left|S_{k}\right|>|S|$ and

$$
\begin{aligned}
& \left|w_{0}\right| \leq q_{m\left(S_{0}\right)-1} \\
& \left|w_{i}\right| \leq q_{m\left(S_{i}\right)-1}-q_{m\left(S_{i}\right)}+1 \quad \text { for every } i \in[k-1] .
\end{aligned}
$$

Since $m\left(S_{i}\right)-1 \geq m\left(S_{i+1}\right)$, we have $q_{m\left(S_{i}\right)-1} \leq q_{m\left(S_{i+1}\right)}$ for all $i>0$. Let $u=w_{k-1} \cdots w_{2} w_{1}$. Hence we have $|u| \leq q_{m\left(S_{k-1}\right)}+k-1 \leq n+m(S)$. We say that the word u "meet" a subgroup H_{m} if there exists S_{i} such that $m\left(S_{i}\right)=m$. It is clear that $|u| \leq n+($ the number of subgroups met by $u)-1$.

Using arguments in the last slides successively, we obtain

$$
\begin{equation*}
R_{k} \xrightarrow{u_{k-1}} R_{k-1} \xrightarrow{u_{k-2}} \cdots \xrightarrow{u_{1}} R_{1} \xrightarrow{u_{0}} R_{0}=S \tag{1}
\end{equation*}
$$

where $R_{k}=\mathbb{Z}_{n}$ and $\left|R_{i}\right|>\left|R_{i-1}\right|$.
For every subgroup H_{m}, only at most $\frac{n}{\left|H_{m}\right|}$ words in $\left\{u_{0}, \ldots, u_{k-1}\right\}$ meet H_{m}. Then

Using arguments in the last slides successively, we obtain

$$
\begin{equation*}
R_{k} \xrightarrow{u_{k-1}} R_{k-1} \xrightarrow{u_{k-2}} \cdots \xrightarrow{u_{1}} R_{1} \xrightarrow{u_{0}} R_{0}=S \tag{1}
\end{equation*}
$$

where $R_{k}=\mathbb{Z}_{n}$ and $\left|R_{i}\right|>\left|R_{i-1}\right|$.
For every subgroup H_{m}, only at most $\frac{n}{\left|H_{m}\right|}$ words in $\left\{u_{0}, \ldots, u_{k-1}\right\}$ meet H_{m}.

Using arguments in the last slides successively, we obtain

$$
\begin{equation*}
R_{k} \xrightarrow{u_{k-1}} R_{k-1} \xrightarrow{u_{k-2}} \cdots \xrightarrow{u_{1}} R_{1} \xrightarrow{u_{0}} R_{0}=S \tag{1}
\end{equation*}
$$

where $R_{k}=\mathbb{Z}_{n}$ and $\left|R_{i}\right|>\left|R_{i-1}\right|$.
For every subgroup H_{m}, only at most $\frac{n}{\left|H_{m}\right|}$ words in $\left\{u_{0}, \ldots, u_{k-1}\right\}$ meet H_{m}. Then

$$
\sum_{i=0}^{k-1}\left|u_{i}\right| \leq n(n-|S|)+\sum_{j=1}^{\ell} \frac{n}{\left|H_{m}\right|} \leq n(n-|S|)+n-1
$$

Thank you

Спасибо

[^0]: ${ }^{1}$ A. N. Trahtman (2009). "The road coloring problem". B: Israel J. Math. 172, c. 51-60. ISSN: 0021-2172,1565-8511.

[^1]: It is clear that $W=f_{W}(N(W))$.

[^2]: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with
 degree bound two'

[^3]: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with
 degree bound two"

[^4]: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with
 degree bound two'

[^5]: 'The NP-completeness of the Hamiltonian cycle problem in planar digraphs with
 degree bound two'

[^6]: ${ }^{2}$ J. Plesník (1979). "The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two". B: Inform. Process. Lett. 8.4, c. 199-201. ISSN: 0020-0190,1872-6119.

[^7]: ${ }^{3}$ Henk Don (2016). "The Černý conjecture and 1-contracting automata". B: Electron. J. Combin. 23.3, Paper 3.12, 10. ISSN: 1077-8926.
 ${ }^{4}$ François Gonze u Raphaël M. Jungers (2019). "Hardly reachable subsets and completely reachable automata with 1-deficient words'

[^8]: ${ }^{3}$ Henk Don (2016). "The Černý conjecture and 1-contracting automata". B: Electron. J. Combin. 23.3, Paper 3.12, 10. ISSN: 1077-8926.
 ${ }^{4}$ François Gonze u Raphaël M. Jungers (2019). "Hardly reachable subsets and completely reachable automata with 1-deficient words'

[^9]: ${ }^{3}$ Henk Don (2016). "The Černý conjecture and 1-contracting automata". B: Electron. J. Combin. 23.3, Paper 3.12, 10. ISSN: 1077-8926.
 ${ }^{4}$ François Gonze и Raphaël M. Jungers (2019). "Hardly reachable subsets and completely reachable automata with 1-deficient words". B: J. Autom. Lang. Comb. 24.2-4, c. 321-342. ISSN: 1430-189X, 2567-3785.

[^10]: ${ }^{5}$ Robert Ferens u Marek Szykut a (2023). "Completely reachable automata: a polynomial algorithm
 and quadratic upper bounds'

[^11]: ${ }^{5}$ Robert Ferens и Marek Szykuł a (2023). "Completely reachable automata: a polynomial algorithm and quadratic upper bounds". B: 50th International Colloquium on Automata, Languages, and Programming. T. 261. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art. No. 59, 17. ISBN: 978-3-95977-278-5.

[^12]: ${ }^{6}$ David Casas и Mikhail V. Volkov (2023). Don's conjecture for binary completely reachable automata: an approach and its limitations. arXiv: 2311.00077 [cs.FL].

[^13]: ${ }^{6}$ David Casas и Mikhail V. Volkov (2023). Don's conjecture for binary completely reachable automata: an approach and its limitations. arXiv: 2311.00077 [cs.FL].

[^14]: ${ }^{6}$ David Casas и Mikhail V. Volkov (2023). Don's conjecture for binary completely reachable automata: an approach and its limitations. arXiv: 2311.00077 [cs.FL].

