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Deterministic finite automata

A deterministic finite automata (DFA) is a triple A = (Q, X, d) where
> Q is a finite set, called the state set;
P> 3 is a finite set, called the input alphabet;
> §:Q x X — Qisamap, called the transition function.
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> * stands for the set of all words over X including the empty word e. The function ¢
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A deterministic finite automata (DFA) is a triple A = (Q, X, d) where
> Q is a finite set, called the state set;
> 3 is a finite set, called the input alphabet;
> §:Q x X — Qisamap, called the transition function.

> * stands for the set of all words over X including the empty word e. The function ¢
extends to a function Q x £* — Q (still denoted by ¢) via the the following recursion:
For every g € Q, we set

5(q7€) =4q
d(q, wa) = 6(6(q, w), a)

forall we X* and a € L.
To simplify the notation, we often write g.w for (g, w) and P.w for {§(q,w) : g € P}.
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Completely reachable automata

Let A= (Q,X,0) be a DFA.
> A non-empty subset P C Q@ is reachable in A if P = Q.w for some word w € L*.
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Completely reachable automata

Let A= (Q,X,0) be a DFA.
> A non-empty subset P C Q@ is reachable in A if P = Q.w for some word w € L*.
> A DFA is completely reachable if every non-empty set of its states is reachable.

» A DFA is synchronizing if there exists a reachable singleton set {x} C Q.
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Digraph

A digraph is a quadruple G = (V, E, i, t) where V, E are non-empty sets and
it:E— V.
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Digraph

A digraph is a quadruple G = (V, E, i, t) where V, E are non-empty sets and
it E— V.

» The elements in V are called vertices;

> the elements of E are called edges;
for an edge e € E,

> the vertex i(e) is called the initial vertex of e;

» the vertex t(e) is called the terminal vertex of e.
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Neighbours and degrees

Let v be a vertex in a digraph G.
» The out-neighbour of v is the set {i(e) : t(e) = v,e € E}, denoted N4 (v).
» The in-neighbour of v is the set {t(e) : i(e) = v, e € E}, denoted N_(v).
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Neighbours and degrees

Let v be a vertex in a digraph G.
» The out-neighbour of v is the set {i(e) : t(e) = v,e € E}, denoted N4 (v).
» The in-neighbour of v is the set {t(e) : i(e) = v, e € E}, denoted N_(v).
» For a subset U € V,

» write N (U) for the set {u: Ny (v),u € U};
> write N_(U) for the set {u: N_(u),u € U}.

» The out-degree of v is the number of edges whose initial vertex is v, denoted
C|+(V).
» The in-degree of v is the number of edges whose terminal vertex is v, denoted

d_(v).
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Road colorings

For a set X, write P(X) for the power set of X.

A road coloring of a finite digraph G = (V, E, i, t) is a function « : E — P(X) such
that for every vertex v € V/, the family of sets

{a(e) : t(e) =v,e € E}

forms a partition of X.
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Automata from road colorings

Let a: E — P(X) be a road coloring of G.
Define A(G, «) to the automaton (V, X, ) such that for every v € V and a € ¥,

v.a = t(e)

where e is the arc such that i(e) = v and a € a(e).
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v.a = t(e)

where e is the arc such that i(e) = v and a € a(e).
The road coloring

» is called a sychronizing coloring if A(G, «) is a synchronizing automata;

» is called a completely reachable coloring if A(G, ) is a completely reachable
automata.
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Trahtman's Road Coloring Theorem

» The period of a strongly connected digraph G is the greatest common divisor of
the lengths of its cycles, denoted p(G).

» A digraph is called aperiodic if its period equals 1.

Theorem (Trahtman?, 2009)

Let G = (V,E,i,t) be a strongly connected digraph and d = max{dy(v),v € V}. The
following are equivalent.

1. The digraph G admits a synchronizing coloring.

2. The digraph G admits a synchronizing coloring with d colors.
3. The digraph G is aperiodic.

YA, N. Trahtman (2009). “The road coloring problem”. B: Israel J. Math. 172, c. 51—60. 15sN:
0021-2172,1565-8511
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Completely reachable colorings

Theorem (Z., 2023+)
A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U C V,

Ul < IN-(U)].
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Completely reachable colorings

Theorem (Z., 2023+)
A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U C V,

Ul < IN-(U)].

Theorem (Z., 2023+)

Let k > 2 be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or
not it admits a completely reachable with k colors is NP-complete.
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Cyclic Decomposition Theorem

Theorem (Cyclic Decomposition Theorem)

Let G be a strongly connected digraph of period p. The vertex set can be partition into
p sets {C; : i € Zp} such that Ny (C;) = Ciyq for every i € Zp.
Moreover, for each vertex v € C; for some j, there exists a positive integer k such that

NK(v) = N_(---N_(v)) = G,
k
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Hall's Marriage Theorem

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and
ECXXxY.
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Hall's Marriage Theorem

A bipartite graph H = (X, Y, E) is a triple, where X, Y are two nonempty sets and
ECXXxY.

The elements in X U Y are vertices and the elements in E are edges. A X-perfect
matching of H is a matching, a set of disjoint edges, which covers every vertex in X.
For U C X, the neighborhood of U is the set {w : (u,w) € E,u € U}, denoted N(U).
Theorem (Hall's Marriage Theorem)

Let H= (X, Y, E) be a bipartite graph. There exists an X-perfect matching if and only
if for every subset U C X, we have |U| < N(U).
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The proof

Theorem (Z., 2023+)
A digraph G = (V, E, i, t) admits a completely reachable coloring if and only if
1. G is strongly connected,
2. G is aperiodic,
3. for every subset U C V,

Ul < IN_(U)!
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The proof

=
» Let o be a completely reachable coloring of G and its color set is . The
corresponding autoaton is A(G,a) = (V, X,9).
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The proof
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>

Let « be a completely reachable coloring of G and its color set is X.. The
corresponding autoaton is A(G,a) = (V, X,9).

For every two vertices u, v, by completely reachability, there exists a word w such
that V.w = {u} and then 6(v, w) = u. Then there exists a walk in G from v to wv.

By Cyclic Decomposition Theorem, the vertex set V can be partitioned into p sets
{Ci i € Zp} such that N (C;) = Cjyq for every i € Zp,.

Then for any word w € ¥* and i € Zp, V.w N C; # (. Since every singleton set is
reachable. we have p = 1.

For a non-empty subset U C V/, take a word w = w’a € X* such that V.w = U.
Let W be the set V.w'. Then

Ul < W] < IN_(U)].
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The proof, cont'd

="

» Define H to be the bipartite graph H = (V4, Va2, Ey) such that V4 = V, = V and
(u,v) € Ep if there exists e € E such that i(e) = v and t(e) = v.

» Observe that for every non-empty subset U C V4, then |U| < [N(U)].
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» Define H to be the bipartite graph H = (V4, Va2, Ey) such that V4 = V, = V and
(u,v) € Ep if there exists e € E such that i(e) = v and t(e) = v.

» Observe that for every non-empty subset U C V4, then |U| < [N(U)].

Let W be a non-empty subset of V;. Let H' be the induced subgraph of H on
W U N(W). By the Hall's Marriage Theorem, there exists a W-perfect matching M in
H'.
Now we can define a function fiy : Vo — V4 as following:
1. for y € V, which is covered by edge (x,y) € M, set fyw(y) = x;

2. for y € N(W) which is not covered by the matching M, set fy(y) to be an
arbitrary vertex in W N N(y).

3. fory € Vo \ N(W), set fyy(y) to be an arbitrary vertex in N(y).
It is clear that W = fiy (N(W)).
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The proof, cont'd
Now we construct a road coloring o : E — P(X), where X = P(V) \ {0} by setting

ale) = {U: fu(t(e) = i(e),0 # U C V}.
Let A= (V,%,8) = A(G,a).
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a(e) ={U : fy(t(e)) = i(e),0 # U C V}.
Let A= (V,X,d) = A(G, ). Note that for every non-empty subset U, we have

S(N_(U), U) = U.

» Let Uy be an arbitrary non-empty subset of V, define U; = N_(U;_1) for all
positive integer i.

» Since G is strongly connected and aperiodic, by Cyclic Decomposition Theorem,
there exists an integer k such that Uy = V.

» Then Uy = (5(V, U 1Ug_o--- Usp Uo).

» Hence A is completely reachable and G admits a completely reachable coloring.
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Theorem (Z., 2023+)

Let k > 2 be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or
not it admits a completely reachable with k colors is NP-complete.
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Theorem (Z., 2023+)

Let k > 2 be a fixed integer. To determine a given digraph G = (V, E, i, t) whether or
not it admits a completely reachable with k colors is NP-complete.
Proof for k = 2:
» Let G =(V,E,i,t) be a digraph such that
1. |V]is an odd prime number;

2. for every vertex v, d(v) = 2;
3. there exist vertice x and y such that d_(x) =1, d_(y) = 3 and d_(z) = 2, for each

ze V\{x,y}.
» Then G admits a completely reachable coloring if and only if G has a hamitonian
cycle.
» To determine whether or not such a given graph G has a hamitonian cycle is
NP-complelte. (Our proof is obtained from the proof in this paper? with some
small modification.)

2J. Plesnik (1979). “The NP-completeness of the Hamiltonian cycle problem in planar digraphs with
degree bound two". B: Inform. Process. Lett. 8.4, c. 199—201. 1ssn: 0020-0190,1872-6119.
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Problems

Let f : N — N.

1. For a given digarph G with n vertices, is there a polynomial-time algorithm to
determine whether G admits a completely reachable coloring which uses f(n)

colors?
2. For a given digraph G which admits a completely reachable coloring, can we find
one completely reachable coloring in polynomial time?
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Don’s Conjecture

Henk Don3 conjecture that if in a DFA with n states, some subset S of states is
reachable, then S is reachable by a word of length < n(n — |S]).

3Henk Don (2016). “The Cerny conjecture and 1-contracting automata”. B: Electron. J. Combin.
23.3, Paper 3.12, 10. 1sSN: 1077-8926.
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Henk Don3 conjecture that if in a DFA with n states, some subset S of states is
reachable, then S is reachable by a word of length < n(n — |S]).

If Don's Conjecture is true, it implies the famous Cerny Conjecture: If A is a
sychronizing DFA with n states, then there exists a signleton set is reachable by a word
of length < (n—1)2.

Francois Gonze and Raphaél Jungers* constructed a series of n-state automata with a
distinguished subset S of | 5| such that if n > 6 then the shortest word that reaches S
is greater than 2—:

3Henk Don (2016). “The Cerny conjecture and 1-contracting automata”. B: Electron. J. Combin.
23.3, Paper 3.12, 10. 1ssn: 1077-8926

“*Frangois Gonze u Raphaél M. Jungers (2019). “Hardly reachable subsets and completely reachable
automata with 1-deficient words”. B: J. Autom. Lang. Comb. 24.2-4, c. 321—342. 1SsN:
1430-189X,2567-3785
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Don's Conjecture for completely reachable automata

The restriction of the conjecture to completely reachable automata is still an open
problem.

Conjecture

If in a completely reachable DFA with n states, some subset S of states is reachable,
then S is reachable by a word of length < n(n — |S]).
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Don's Conjecture for completely reachable automata

The restriction of the conjecture to completely reachable automata is still an open
problem.
Conjecture

If in a completely reachable DFA with n states, some subset S of states is reachable,
then S is reachable by a word of length < n(n — |S]).

Theorem (Robert Ferens and Marek Szykuta®, 2023)

If in a completely reachable DFA with n states, some subset S of states is reachable,
then S is reachable by a word of length < 2n(n — |S]).

SRobert Ferens n Marek Szykut a (2023). “Completely reachable automata: a polynomial algorithm
and quadratic upper bounds”. B: 50th International Colloquium on Automata, Languages, and
Programming. T. 261. LIPlcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform.,

Wadern, Art. No. 59, 17. 1sBN: 978-3-95977-278-5.
17/28



Binary completely reachable automata

» DFAs with two letters are called binary.

18/28



Binary completely reachable automata

» DFAs with two letters are called binary.

» For n > 3, an n-state binary completely reachable automaton is circular, that is,
one of the letters acts as a circular permutation.

18/28



Binary completely reachable automata

» DFAs with two letters are called binary.

» For n > 3, an n-state binary completely reachable automaton is circular, that is,
one of the letters acts as a circular permutation.
» For an n-state binary completely reachable automaton DFA A = (Q, X, d), we will

assume Q = Z,, ¥ ={a, b} and for all g € Q, g.b = g & 1, where & stands for
addition modulo n.

18/28



Binary completely reachable automata

» DFAs with two letters are called binary.

» For n > 3, an n-state binary completely reachable automaton is circular, that is,
one of the letters acts as a circular permutation.

» For an n-state binary completely reachable automaton DFA A = (Q, X, d), we will
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Let A= (Q,X,0) be an n-state DFA and S a subset of Q.
» A word w over ¥ expands S if there exists a set R such that R.w = S and
|R > [S].

» A proper non-empty subset of @ is said to be k-expandable if it can be expanded
by a word of length at most k.

> |f every proper non-empty subset of Q is n-expandable, then the DFA A fulfills
Don's Conjecture.

» There exists a standradized DFA and a subset of states such that the subset is not
n-expandable in the DFA.
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A sequence of subgroups

Let A = (Zn,{a, b}, 0) be a standardized DFA. For a subgroup H of (Z,,®), define
UAH) ={ie{l,... . — 1} Ha"Nn(H®& i) #0, k> 1}.
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UAH) ={ie{l,....fp -1} : Hakn(He i) #0,k > 1}.
Since A is completely reachable, U(A, H) is non-empty.

» Define Hp to the trivial subgroup of (Z,, ®).

» For an integer i > 1 such that H;_1 # (Z,,®), define H; to be the subgroup of
(Zn, ®) generated by H;—1 U U(A, H;_1).

» \We obtain a sequence of subgroups

{0}:H0<H1<1"'<]Hg=(Zn,@).

» Observe that ¢ < Q(n), where Q(n) is the number of prime factors of n with
multiplicity.
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Outline of our proof

Theorem (Z., 2023+)

Let A= (Zn,X,0) be a standardized automata. For a non-empty subset S, S is
reachable by a word of length < n(n — k) 4+ n— 1.

There are some minor differences between the real proof and the following outline.
Outline of our proof'

>

>

Write g; for ‘H| Let S C Z,. And define m(S) be the integer m such that S is
not a union of H,,-cosets and is a union of H,,_1-cosets.

There exists a word w of length < gp,(s)_1 such that R.w = S and either

|R| > |S| or m(R) < m(S).

Moreover, if 0 ¢ S, then we can improve the estimate of the length of w to

W[ < Gm(s)—1 — dm(s) + 1.

Then, for every non-empty proper subset S, there exists an expanding word for S
of length < n+ m(S).

By connecting some expanding words, we can get a word w’ of length

< n(n—1S|) 4+ n—1 such that Z, .w' = S.

22/28



Restricted Cayley digraph
Let k be a positive integer. Write [k] for {1,..., k}.
» A [k]-graded set (X, f) is a set X together with a function f : X — [K].

23/28


https://arxiv.org/abs/2311.00077

Restricted Cayley digraph
Let k be a positive integer. Write [k] for {1,..., k}.
» A [k]-graded set (X, f) is a set X together with a function f : X — [K].

> Let X be a subset of a group G, the Cayley digraph of G with respect to X,
denoted Cay(G, X), has G as its vertex set and {(g,gx) : g € G,x € X} as its
edge set.

23/28


https://arxiv.org/abs/2311.00077

Restricted Cayley digraph
Let k be a positive integer. Write [k] for {1,..., k}.
» A [k]-graded set (X, f) is a set X together with a function f : X — [K].

> Let X be a subset of a group G, the Cayley digraph of G with respect to X,
denoted Cay(G, X), has G as its vertex set and {(g,gx) : g € G,x € X} as its
edge set.

» If G =7Z,is a cyclic group and (X, f) is [k]-graded set, the restricted Cayley
digraph R(G, X, f) of Z, with respect to (X, f) has G as its vertex set and
{(g,gx): g€ G,xe X,g+ f(x) < n} as its edge set.

23/28


https://arxiv.org/abs/2311.00077

Restricted Cayley digraph
Let k be a positive integer. Write [k] for {1,..., k}.

» A [k]-graded set (X, f) is a set X together with a function f : X — [K].

> Let X be a subset of a group G, the Cayley digraph of G with respect to X,
denoted Cay(G, X), has G as its vertex set and {(g,gx) : g € G,x € X} as its
edge set.

» If G =7Z,is a cyclic group and (X, f) is [k]-graded set, the restricted Cayley
digraph R(G, X, f) of Z, with respect to (X, f) has G as its vertex set and
{(g,gx): g€ G,xe X,g+ f(x) < n} as its edge set.

Lemma

Let G = (Zn,®). Let (X, ) be a [k]-graded set. If f is a surjective map, then the
strongly connected components of R(G, X, f) have the cosets of (X) as their vertex
sets.

23/28


https://arxiv.org/abs/2311.00077

Restricted Cayley digraph
Let k be a positive integer. Write [k] for {1,..., k}.

» A [k]-graded set (X, f) is a set X together with a function f : X — [K].

> Let X be a subset of a group G, the Cayley digraph of G with respect to X,
denoted Cay(G, X), has G as its vertex set and {(g,gx) : g € G,x € X} as its
edge set.

» If G =7Z,is a cyclic group and (X, f) is [k]-graded set, the restricted Cayley
digraph R(G, X, f) of Z, with respect to (X, f) has G as its vertex set and
{(g,gx): g€ G,xe X,g+ f(x) < n} as its edge set.

Lemma

Let G = (Zn,®). Let (X, ) be a [k]-graded set. If f is a surjective map, then the
strongly connected components of R(G, X, f) have the cosets of (X) as their vertex
sets.

This lemma is a corollary of [Proposition 5,7].

"David Casas u Mikhail V. Volkov (2023). Don's conjecture for binary completely reachable
automata: an approach and its limitations. arXiv: 2311.00077 [cs.FL].
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Let A is a standardize DFA. Let S be proper non-empty subset of Z,. Then there exists
a word w of length < q,,(s)—1 satisfying one of the following conditions:
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2. 0¢ R and Hyp—1 N R =% () which imply m(R) < m(S).
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be the least integer k such that H,,_1.a" N (Hm_1 @ j) # 0.

» In R(G, X, f), there exists a strongly connected component C = H,,, @ t such that
CNS ¢ {0,C}. (Regard C and S as sets of H,,_1-cosets.)

» Take two vertices L=Hp,_1®pe C\Sand L' =H,_1®p € CNS such that
(L, L") is an edge of R(G, X, f).
» One can check that af (Hm-1®(P'=P) b is a word satisfying our requirements.
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In the case that 0 ¢ S and H,s5)N'S # 0,
» Consider S.p9m 1.

» Applying the arguments in the last slides for S.b9"~1, we can obtain a word
af (Hm-1®(p'=P)) pP satisfying our requirements with respect to S.h9m 1,

» We can prove that p > g, — 1. So the word af (Hm-1®(p'=P)) pp—am+1 gatifies our
requirements with respect to S and its length is at most gm—1 — gm + 1.
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Using arguments in the last slides successively, we obtain

Ry Rio1—2s .. 4Ry Ro=5S (1)
where Ry = Z,, and |R;| > |Ri_1]-
For every subgroup Hpn, only at most ‘H | words in {up, ..., ux_1} meet Hp. Then
k—1 ¢
Z|u;|§n(n—|5| n(n—1S])+n—1.
i=0 j=1
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Thank you

Cnacunbo
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