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Convension

In this talk, a “matrix” means a non-negative (Boolean) square matrix.

non-negative matrix tuple ↔ Boolean matrix tuple ↔ arc-labelled digraph

0 2 0
0 0 3
1 0 0

 ,

3 0 0
0 2 0
0 0 1

 ↔

0 1 0
0 0 1
1 0 0

 ,

1 0 0
0 1 0
0 0 1

 ↔ 1 2

3
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Perron-Frobenius-Romanovsky theorem

A nonnegative n-by-n matrix A is called primitive if Ak > 0 (entrywise) for some k ≥ 0.

Theorem (Perron-Frobenius, 1912; Romanovsky, 1933)
An irreducible matrix A is not primitive if one of the following equivalent conditions is
satisfied:
1. the length of all cycles of the digraph of the matrix A have greatest common

divisor r > 1.
2. there is a partition of the set {1, . . . , n} into r > 1 sets π = (V1, . . . ,Vr ) such that

A is a block permutation matrix with respect to π.
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Primitive index

I Suppose that we wish to decide whether or not a nonnegative matrix A is primitive
by computing the sequence of powers A,A2,A3, . . . (although this may not a clever
way). It would be nice to know when we have computed enough powers of A to
render a judgement.

I The minimal positive integer m such that Am > 0 is called the primitive index of
A, denoted by p(A).

I Define p(n) := max{p(A) : A is a primitive n-by-n matrix}.

Theorem (Wielandt1, 1959)
If A is a non-negative primitive matrix of size n, then An2−2n+2 is positive. Furthermore,
there exists a primitive matrix B of size n such that Bn2−2n+1 is not positive.
Equivalently, p(n) = n2 − 2n + 2.

1H. Wielandt (1959). “Unzerlegbare, nicht negative Matrizen”. В: Mathematische Zeitschrift 52,
642–648.
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Tightness of Wielandt bound

B =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 1
1 1 0 0 · · · 0



Bn2−2n+1 =


0 1 1 1 · · · 1
1 1 1 1 · · · 1
...

...
...

...
...

...
1 1 1 1 · · · 1
1 1 1 1 · · · 1
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Three primitivities of matrix tuples

Primitivity of matrices plays an important role in the study of markov processes. When
we study on some processes which involv multiple matrices (e.g., inhomogeneous
Markov process, multi-dimensional Markov process), we need to generalize the concept
“primitivity”.

There are several possibilities to generalize the concept “primitivity” from a nonnegative
matrix to a tuple of nonnegative matrices.

Today, we focus on three generalizations:
I strong primitivity
I primitivity
I Hurwitz primitivity
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Problems

I For a matrix tuple, how to determine whether it is (strongly, Hurwitz) primitive or
not?

I For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product of
it?

I What is the maximum (strongly, Hurwitz) primitive index of all (strongly, Hurwitz)
primitive m-tuples of n-by-n nonnegative matrices?
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(Strongly) primitive matrix tuples

Let A = (A1, . . . ,Am) be an m-tuple of nonnegative n-by-n matrices. For each finite
sequence α = α1 · · ·αk over [m] = {1, 2 . . . ,m}, write Aα for Aα1 · · ·Aαk

and call it a
product over A of length k .
I The m-tuple A is called primitive if there exists a finite sequence α over [m] such

that
Aα > 0.

The minimum length of positive products over A is called the primitive index of
A.

I The m-tuple A is called strongly primitive if there exists a positive integer k such
that for all length-k sequence α over [m] such that

Aα > 0.

The minimum such integer k is called the strongly primitive index of A.
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Types of sequences
Let α = α1 · · ·αk be a sequence over a set X .
I For any x ∈ X , we denote the number of occurrences of x in the word α by |α|x ,

that is
|α|x = |{i ∈ [k] : αi = x}|.

I The type of α, denoted by t(α), is the vector in NX such that

t(α)(x) = |α|x

for each x ∈ X .

Example
The type of the sequence α = 1442112 over {1, 2, 3, 4} is

t(α) = (3, 2, 0, 2).
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Hurwitz products and Hurwitz primitivity

Let A = (A1, . . . ,Am) an m-tuple of nonnegative n-by-n matrices. For each
τ = (τ1, . . . , τm) ∈ Nm, let

Aτ =
∑

α: t(α)=τ

Aα .

We call Aτ a Hurwitz product of A of length |τ | :=
∑m

i=1 τi .
I The tuple A is Hurwitz primitive if it has a positive Hurwitz product.
I The minimum length of positive Hurwitz products is called the Hurwitz primitive

index of A.

Example
I A = (A1,A2,A3).
I A(1,3,0) = A1A

3
2 + A2A1A

2
2 + A2

2A1A2 + A3
2A1.
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Hierarchy of primitivities

{strongly primitive matrix tuple} ( {primitive matrix tuple}
( {Hurwitz primitive matrix tuple}
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Determine Problems

I [Gerencsér-Gusev-Jungers2, 2018] The determine problem of primitivity is NP-hard
(even for two matrices).

I The algorithmic complexity of determining Hurwitz primitivity is still unknown.

2Balázs Gerencsér, Vladimir V. Gusev и Raphaël M. Jungers (2018). “Primitive sets of nonnegative
matrices and synchronizing automata”. В: SIAM J. Matrix Anal. Appl. 39.1, с. 83—98.
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Maximum (Hurwitz) primitive index
I p(n,m)

.
= the maximum primitive index of all primitive m-tuples of n-by-n

matrices.
I p(n)

.
= maxm≥1 p(n,m).

I hp(n,m)
.

= the maximum Hurwitz primitive index of all Hurwitz primitive m-tuples
of n-by-n matrices.

Theorem (Gerencsér-Gusev-Jungers3, 2018)
limn→+∞

log p(n)
n = log 3

3 .

Theorem (Olesky-Shader-Driessche4, 2002)
hp(n,m) = Θ(nm+1).

3Balázs Gerencsér, Vladimir V. Gusev и Raphaël M. Jungers (2018). “Primitive sets of nonnegative
matrices and synchronizing automata”. В: SIAM J. Matrix Anal. Appl. 39.1, с. 83—98.

4D. D. Olesky, Bryan Shader и P. van den Driessche (2002). “Exponents of tuples of nonnegative
matrices”. В: т. 356, с. 123—134.
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Two subfamilies of square matrices

In many applications, the matrices that appear are (doubly) stochastic matrices.
I The set of nonnegative n-by-n matrices that has no zero rows is denoted by

NZ1(n). (row-stochastic matrix)
I The set of nonnegative n-by-n matrices that has no zero rows and no zero columns

is denoted by NZ2(n). (doubly-stochastic matrix)
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Block permutation matrices

Let A be an n-by-n matrix. Let π = (π1, . . . , πr ) be a partition of [n]. We say that A
preserves the partition π if there exists a permutation σ ∈ Symr such that
A(πi , πj) = 0 whenever j 6= σ(i).

14 / 34



Two characterization theorems

I A tuple of nonnegative matrices A is irreducible if
∑

A∈A A is irreducible.
I A partition is non-trivial if it contains at least two parts.

Theorem (Protasov-Voynov5, 2012)
Let A be an irreducible tuple of NZ2-matrices. The tuple A is not primitive if and only
if there exists a non-trivial partition π such that every matrix in A preserves π.

Theorem (Protasov6, 2013)
Let A be an irreducible tuple of NZ1-matrices. The tuple A is not Hurwitz primitive if
and only if there exists a non-trivial partition π such that every matrix in A preserves π
and all these permutations corresponding to members of A commute with each other.

5V.Yu. Protasov и A.S. Voynov (2012). “Sets of nonnegative matrices without positive products”.
В: Linear Algebra and its Applications 437.3, с. 749—765.

6V.Yu. Protasov (2013). “Classification of k-primitive sets of matrices”. В: SIAM J. Matrix Anal.
34.3, с. 1174—1188.
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Different proofs

Characterization theorem of primitive NZ2(n)-matrix tuples:
I Protasov-Voynov (2012) give the first proof by using geometrical properties of

affine operators on polyhedra.
I Three combinatorial proofs are found by Al’pin-Alpina (2013),

Blondel-Jungers-Olshevsky (2015), and Al’pin-Alpina (2019).
I Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive NZ1(n)-matrix tuples:
I The origin proof is reported by Protasov (2013), which is based on some earlier

work of Olesky-Shader-Driessche (2002).

I Wu and Z.(2023) present a unified combinatorial proof of these two
characterization theorems. This proof provides a faster determine algorithm of
(Hurwitz) primitivity.
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A sketch of the proof (primitive)
Let A be a m-tuple of nonnegative n-by-n NZ2-matrices.
Define ≈ to be the binary relation on [n] such that i ≈ j if for all i ′, j ′ ∈ [n] and for all
finite sequence α over [m] satisfying

Aα(i , i ′) > 0 and Aα(j , j ′) > 0,

there exists k ∈ [n] and a sequence β such that

Aβ(i ′, k) > 0 and Aβ(j ′, k) > 0.

The relation ≈ is called the stable relation of A.
It is routine to verify the following statements.
I The relation ≈ is an equivalence relation.
I Let π be the partition which is formed by the equivalence class of ≈. The matrices

in A preserve π.
I The partition π is the unique minimal (finest) partition of [n] such that all matrices

in A preserve it.
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A sketch of the proof (Hurwitz primitive)
Let A be a m-tuple of nonnegative n-by-n NZ1-matrices.

Define
h
≈ to be the binary relation on [n] such that i

h
≈ j if for all i ′, j ′ ∈ [n] and for all

vector τ ∈ Nm satisfying

Aτ (i , i ′) > 0 and Aτ (j , j ′) > 0,

there exists k ∈ [n] and a vector β ∈ Nm such that

Aγ(i ′, k) > 0 and Aγ(j ′, k) > 0.

The relation
h
≈ is called the Hurwitz stable relation of A.

It is routine to verify the following statements.
I The relation

h
≈ is an equivalence relation.

I Let π be the partition which is formed by the equivalence class of
h
≈. The matrices

in A preserve π.
I The partition π is the unique minimal (finest) partition of [n] such that all matrices

in A preserve π and all these permutations corresponding to members of A
commute with each other. 18 / 34



Algorithms

We can determine a given NZ1-matrix tuple (resp., NZ2-matrix tuple) whether is
primitive (resp., Hurwitz primitive) or not by calculating the equivalence relation ≈
(resp.,

h
≈).

Then there is an algorithm
I to determine primitivity for a given NZ1-matrix tuple in O(n2m)-time;
I to determine Hurwitz primitivity for a given NZ2-matrix tuple in O(n2m2 + n3m).
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Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.
I pX (n)

.
= the maximum primitive index of all primitive tuples of n-by-n X -matrices;

I hpX (n)
.

= the maximum Hurwitz primitive index of all Hurwitz primitive tuples of
n-by-n X -matrices.

We will present some results on pNZ2
(n) and hpNZ1

(n).

20 / 34



Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.
I pX (n)

.
= the maximum primitive index of all primitive tuples of n-by-n X -matrices;

I hpX (n)
.

= the maximum Hurwitz primitive index of all Hurwitz primitive tuples of
n-by-n X -matrices.

We will present some results on pNZ2
(n) and hpNZ1

(n).

20 / 34



pNZ2
(n) and hpNZ1

(n)
I [Blondel-Jungers-Olshevsky7, 2015]

n2

2
≤ pNZ2

(n) ≤ 2c(n) + n − 1 ≤ O(n3).

I [Gusev8, 2013]
(n − 1)2 ≤ hpNZ1

(n).

I [Wu-Z.9, 2023]

hpNZ1
(n) ≤ 2c(n) +

⌊
(n + 1)2

4

⌋
= O(n3)

7Vincent D. Blondel, Raphaël M. Jungers и Alex Olshevsky (2015). “On primitivity of sets of
matrices”. В: Automatica J. IFAC 61, с. 80—88.

8Vladimir V. Gusev (2013). “Lower bounds for the length of reset words in Eulerian automata”. В:
Internat. J. Found. Comput. Sci. 24.2, с. 251—262.

9Yaokun Wu и Yinfeng Zhu (2023). “Primitivity and Hurwitz Primitivity of Nonnegative Matrix
Tuples: A Unified Approach”. В: SIAM Journal on Matrix Analysis and Applications 44.1, с. 196—211.
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Synchronizing automata
I A square Boolean matrix is called an automaton matrix if each row of A contains

a unique 1.
I An n-state automaton is a tuple of n-by-n automaton matrices.
I An automaton A is synchronizing if there exists a product Aα which contains a

positive column.
I The minimum length of such products is called synchronizing index of A.

Example (4-state synchronizing automaton)

1 2

34
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Černý Conjecture

Define the Černý function c(n) as the maximum synchronizing index of all
synchronizing automata with n states.

Conjecture (Černý, 197110)
c(n) = (n − 1)2.

10Ján Černý, Alica Pirická и Blanka Rosenauerová (1971). “On directable automata”. В: Kybernetika
(Prague) 7, с. 289—298. issn: 0023-5954.
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Define the Černý function c(n) as the maximum synchronizing index of all
synchronizing automata with n states.

Conjecture (Černý, 197110)
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Some progresses on Černý Conjecture

In 1964, Černý11 found a family of automata {Cn} such that Cn is an n-state
synchronizing automaton whose synchronizing index equals (n − 1)2. This shows that

(n − 1)2 ≤ c(n).

1 2

34

11Ján Černý (1964). “A remark on homogeneous experiments with finite automata”. В: Mat.-Fyz.
Časopis. Sloven. Akad. Vied. 14. (Slovak. English summary), с. 208—216. issn: 0543-0046.
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In 1964, Černý11 found a family of automata {Cn} such that Cn is an n-state
synchronizing automaton whose synchronizing index equals (n − 1)2. This shows that

(n − 1)2 ≤ c(n).

1 2

34
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Časopis. Sloven. Akad. Vied. 14. (Slovak. English summary), с. 208—216. issn: 0543-0046.

24 / 34



Some progresses on Černý Conjecture, Cont’d

There are some upper bounds of c(n) which roughly equals n3

6 .

I [Frankl12-Pin13 1982] c(n) ≤ n3−n
6 ≈ 0.167n3

I [Szyku la14 2018] c(n) ≤ 85059n3+90024n2+196504n−10648
511104 ≈ 0.166n3

I [Shitov15 2019] c(n) ≤
( 7

48 + 15625
798768

)
n3 + o(n3) ≈ 0.165n3

12P. Frankl (1982). “An extremal problem for two families of sets”. В: European J. Combin. 3.2,
с. 125—127.

13J.-E. Pin (1983). “On two combinatorial problems arising from automata theory”. В: Combinatorial
mathematics (Marseille-Luminy, 1981). Т. 75. North-Holland Math. Stud. С. 535—548.

14Marek Szyku la (2018). “Improving the upper bound and the length of the shortest reset words”. В:
т. 96. LIPIcs. Leibniz Int. Proc. Inform. Art. No. 56, 13.

15Y. Shitov (2019). “An improvement to a recent upper bound for synchronizing words of finite
automata”. В: Journal of Automata, Languages and Combinatorics 24, с. 367—373.
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Connection between primitive NZ2-matrix tuples and Synchronizing
Automata

Let A be an primitive tuple of n-by-n Boolean NZ2-matrix.
I C .

= {C : C ≤ A ∈ A and C is an automaton matrix}.

Observation (Blondel-Jungers-Olshevsky16, 2015)
The automaton C is synchronizing.

16Vincent D. Blondel, Raphaël M. Jungers и Alex Olshevsky (2015). “On primitivity of sets of
matrices”. В: Automatica J. IFAC 61, с. 80—88.

26 / 34



Connection between primitive NZ2-matrix tuples and Synchronizing
Automata

Let A be an primitive tuple of n-by-n Boolean NZ2-matrix.
I C .

= {C : C ≤ A ∈ A and C is an automaton matrix}.

Observation (Blondel-Jungers-Olshevsky16, 2015)
The automaton C is synchronizing.
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Connection between Hurwitz primitive NZ1-matrix tuples and Synchronizing
Automata

Let A be an Hurwitz primitive tuple of n-by-n Boolean NZ1-matrix.
I B .

= A∪{AiAj + AjAi : Ai ,Aj ∈ A}.
I C .

= {C : C ≤ B ∈ B and C is an automaton matrix}.

Observation (Wu-Z., 2023)
The automaton C is synchronizing.
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Proof of the upper bound of hpNZ1
(n)

I Regard A = (A1, . . . ,Am) as an arc-labeled digraph D, where V (D) = [n] and
E (D) = {x k−→ y : Ak(x , y) > 0}.

I Find a positive Hurwitz product of A ⇔ find τ ∈ Nm such that for all vertices x
and y there exists a walk from x to y such that the arc-label sequence of this walk
is type-τ .

I By the observation in the last page, there exists τ ′ ∈ Nm and a vertex z such that
for each vertex x there exists a walk from x to z satisfying the arc-label sequence
of this walk is type-τ ′ and |τ ′| ≤ 2 c(n).

I Since the digraph D is strongly connected, there exists a closed walk W which
visits every vertex and has length at most

⌊
(n+1)2

4

⌋
.

I For all vertices x and y , we “connect” W and one of τ ′-walks in a proper way to
construct a walk from x to y .
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Strongly primitive matrix tuples

Let A = (A1, . . . ,Am) be an m-tuple of nonnegative n-by-n matrices.
I The m-tuple A is called strongly primitive if there exists a positive integer k such

that for all length-k sequence α over [m] such that

Aα > 0.

The minimum such integer k is called the strongly primitive index of A, denoted
by sp(A).
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Maximum strongly primitive matrix index
Theorem (Cohen-Sellers17, 1982)
For any strongly primitive n-by-n matrix tuple A,

sp(A) ≤ 2n − 2.

Moreover, there exists a strongly primitive n-by-n matrix tuple B such that
sp(B) = 2n − 2.

I Define
γ(n) := min{|A| : g(A) = 2n − 2,A is an order-n strongly primitve matrix set}.

I The Cohen-Sellers construction shows γ(n) ≤ 2n − 3.
I [Cohen-Sellers, 1982] γ(n) =?

I [Wu-Z.18, 2015] γ(n) ≤ n.
17J. E. Cohen и P. H. Sellers (1982). “Sets of nonnegative matrices with positive inhomogeneous

products”. В: Linear Algebra and its Application 47, с. 185—192.
18Yaokun Wu и Yinfeng Zhu (2015). “Lifespan in a primitive Boolean linear dynamical system”. В:

The Electronic Journal of Combinatorics 22.Paper. #P4.36, с. 1—21.
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Our construction

Define An = {A1, . . . ,An} such that

Ak(i , j) =

{
1 if either i = j or i = k or j = k ,
0 otherwise.

One can check that sp(An) = 2n − 2.

Example

A4 =



1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

 ,

1 1 0 0
1 1 1 1
0 1 1 0
0 1 0 1

 ,

1 0 1 0
0 1 1 0
1 1 1 1
0 0 1 1

 ,

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 1


 .
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Motivation

I It is not yet known whether there is a polynomial-time algorithm for determining
strong primitivity.

I Cohen-Seller’s construction tells us that the strong primitivity index sp(n) can
grow exponentially.

I To understand the strong primitivity, an important question is whether the strong
primitivity index sp(n,m) can grow exponentially with respect to n and m.

I Our construction shows that sp(n, n) grows exponentially. This may be a sign that
the strong primitivity can hardly be determined in polynomial time.
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Summary
Primitivity Hurwitz Primitivity Strong primitivity

Assumption NZ2 NZ1

Determine problem NP-hard O(n2m) ? O(n2m2 + n3m) ?
Finding such
a product NP-hard O(n3m) ? O(n3m2) /

Lower bounds
of indices 3

n
3 (1−ε) n2

2 Cnm+1 (n − 1)2 + 1 2n − 2

Upper bounds
of indices 3

n
3 (1+ε) O(n3) m!mnm+1 + n2 O(n3) 2n − 2
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Thank you

Спасибо
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