Three primitivities on matrix tuples

Yinfeng Zhu
Ural Federal University

1339-е заседание семинара "Алгебраические системы"
November 30, 2023

Convension

In this talk, a "matrix" means a non-negative (Boolean) square matrix.
non-negative matrix tuple
$\leftrightarrow \quad$ Boolean matrix tuple
$\leftrightarrow \quad$ arc-labelled digraph

Convension

In this talk, a "matrix" means a non-negative (Boolean) square matrix.

$$
\begin{aligned}
& \text { non-negative matrix tuple } \quad \leftrightarrow \quad \text { Boolean matrix tuple } \quad \leftrightarrow \quad \text { arc-labelled digraph } \\
& \left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 3 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \leftrightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \leftrightarrow
\end{aligned}
$$

Perron-Frobenius-Romanovsky theorem

A nonnegative n-by- n matrix A is called primitive if $A^{k}>0$ (entrywise) for some $k \geq 0$.

```
Theorem (Perron-Frobenius, 1912; Romanovsky, 1933)
An irreducible matrix A is not primitive if one of the following equivalent conditions is
satisfied:
    1. the length of all cycles of the digraph of the matrix A have greatest common
    divisor r>1.
    2. there is a partition of the set {1,\ldots,n} intor>1 sets }\pi=(\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{r}{})\mathrm{ such that
    A is a block permutation matrix with respect to }
```


Perron-Frobenius-Romanovsky theorem

A nonnegative n-by- n matrix A is called primitive if $A^{k}>0$ (entrywise) for some $k \geq 0$. Theorem (Perron-Frobenius, 1912; Romanovsky, 1933)
An irreducible matrix A is not primitive if one of the following equivalent conditions is satisfied:

1. the length of all cycles of the digraph of the matrix A have greatest common divisor $r>1$.
2. there is a partition of the set $\{1, \ldots, n\}$ into $r>1$ sets $\pi=\left(V_{1}, \ldots, V_{r}\right)$ such that A is a block permutation matrix with respect to π.

Primitive index

- Suppose that we wish to decide whether or not a nonnegative matrix A is primitive by computing the sequence of powers A, A^{2}, A^{3}, \ldots (although this may not a clever way). It would be nice to know when we have computed enough powers of A to render a judgement.
\rightarrow The minimal positive integer m such that $A^{m}>0$ is called the primitive index of A, denoted by $\mathrm{p}(A)$
\rightarrow Define $\mathrm{n}(n):=\max \{\mathrm{n}(A): A$ is a primitive n-by- n matrix $\}$
Theorem (Wielandt ${ }^{1}$, 1959)
If A is a non-negative primitive matrix of size n, then $A^{n^{2}-2 n+2}$ is positive. Furthermore, there exists a primitive matrix B of size n such that $B^{n^{2}-2 n+1}$ is not positive. Equivalently, $\mathrm{p}(n)=n^{2}-2 n+2$.

Primitive index

- Suppose that we wish to decide whether or not a nonnegative matrix A is primitive by computing the sequence of powers A, A^{2}, A^{3}, \ldots (although this may not a clever way). It would be nice to know when we have computed enough powers of A to render a judgement.
- The minimal positive integer m such that $A^{m}>0$ is called the primitive index of A, denoted by $\mathrm{p}(A)$.
\rightarrow Define $p(n):=\max \{p(A): A$ is a primitive n-by- n matrix $\}$
Theorem (Wielandt ${ }^{1}$, 1959)
If A is a non-negative primitive matrix of size n, then $A^{n^{2}-2 n+2}$ is positive. Furthermore, there exists a primitive matrix B of size n such that $B^{n^{2}-2 n+1}$ is not positive. Equivalently, $\mathrm{p}(n)=n^{2}-2 n+2$.

Primitive index

- Suppose that we wish to decide whether or not a nonnegative matrix A is primitive by computing the sequence of powers A, A^{2}, A^{3}, \ldots (although this may not a clever way). It would be nice to know when we have computed enough powers of A to render a judgement.
- The minimal positive integer m such that $A^{m}>0$ is called the primitive index of A, denoted by $\mathrm{p}(A)$.
- Define $\mathrm{p}(n):=\max \{\mathrm{p}(A): A$ is a primitive n-by- n matrix $\}$.

Theorem (Wielandt¹, 1959)
If A is a non-negative primitive matrix of size n, then $A^{n^{2}-2 n+2}$ is positive. Furthermore, there exists a primitive matrix B of size n such that $B^{n^{2}-2 n+1}$ is not positive. Equivalently, $p(n)=n^{2}-2 n+2$.

Primitive index

- Suppose that we wish to decide whether or not a nonnegative matrix A is primitive by computing the sequence of powers A, A^{2}, A^{3}, \ldots (although this may not a clever way). It would be nice to know when we have computed enough powers of A to render a judgement.
- The minimal positive integer m such that $A^{m}>0$ is called the primitive index of A, denoted by $\mathrm{p}(A)$.
- Define $\mathrm{p}(n):=\max \{\mathrm{p}(A): A$ is a primitive n-by- n matrix $\}$.

Theorem (Wielandt ${ }^{1}$, 1959)

If A is a non-negative primitive matrix of size n, then $A^{n^{2}-2 n+2}$ is positive. Furthermore, there exists a primitive matrix B of size n such that $B^{n^{2}-2 n+1}$ is not positive. Equivalently, $\mathrm{p}(n)=n^{2}-2 n+2$.

[^0]
Primitive index

- Suppose that we wish to decide whether or not a nonnegative matrix A is primitive by computing the sequence of powers A, A^{2}, A^{3}, \ldots (although this may not a clever way). It would be nice to know when we have computed enough powers of A to render a judgement.
- The minimal positive integer m such that $A^{m}>0$ is called the primitive index of A, denoted by $\mathrm{p}(A)$.
- Define $\mathrm{p}(n):=\max \{\mathrm{p}(A): A$ is a primitive n-by- n matrix $\}$.

Theorem (Wielandt ${ }^{1}$, 1959)

If A is a non-negative primitive matrix of size n, then $A^{n^{2}-2 n+2}$ is positive. Furthermore, there exists a primitive matrix B of size n such that $B^{n^{2}-2 n+1}$ is not positive. Equivalently, $\mathrm{p}(n)=n^{2}-2 n+2$

[^1]
Primitive index

- Suppose that we wish to decide whether or not a nonnegative matrix A is primitive by computing the sequence of powers A, A^{2}, A^{3}, \ldots (although this may not a clever way). It would be nice to know when we have computed enough powers of A to render a judgement.
- The minimal positive integer m such that $A^{m}>0$ is called the primitive index of A, denoted by $\mathrm{p}(A)$.
- Define $\mathrm{p}(n):=\max \{\mathrm{p}(A): A$ is a primitive n-by- n matrix $\}$.

Theorem (Wielandt ${ }^{1}$, 1959)

If A is a non-negative primitive matrix of size n, then $A^{n^{2}-2 n+2}$ is positive. Furthermore, there exists a primitive matrix B of size n such that $B^{n^{2}-2 n+1}$ is not positive. Equivalently, $\mathrm{p}(n)=n^{2}-2 n+2$.

[^2]
Tightness of Wielandt bound

$$
B=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Tightness of Wielandt bound

$$
\begin{aligned}
B= & {\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 0 & 0 & \cdots & 0
\end{array}\right] } \\
B^{n^{2}-2 n+1} & =\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & 1 & \cdots & 1
\end{array}\right]
\end{aligned}
$$

Three primitivities of matrix tuples

Primitivity of matrices plays an important role in the study of markov processes. When we study on some processes which involv multiple matrices (e.g., inhomogeneous Markov process, multi-dimensional Markov process), we need to generalize the concept "primitivity".

There are several possibilities to generalize the concept "primitivity" from a nonnegative matrix to a tuple of nonnegative matrices

Today, we focus on three generalizations
> strong primitivity

- primitivity
- Hurwitz primitivity

Three primitivities of matrix tuples

Primitivity of matrices plays an important role in the study of markov processes. When we study on some processes which involv multiple matrices (e.g., inhomogeneous Markov process, multi-dimensional Markov process), we need to generalize the concept "primitivity".

There are several possibilities to generalize the concept "primitivity" from a nonnegative matrix to a tuple of nonnegative matrices.

Today, we focus on three generalizations:

- strong primitivity
- primitivity
> Hurwitz primitivity

Three primitivities of matrix tuples

Primitivity of matrices plays an important role in the study of markov processes. When we study on some processes which involv multiple matrices (e.g., inhomogeneous Markov process, multi-dimensional Markov process), we need to generalize the concept "primitivity".

There are several possibilities to generalize the concept "primitivity" from a nonnegative matrix to a tuple of nonnegative matrices.

Today, we focus on three generalizations:

- strong primitivity
- primitivity
- Hurwitz primitivity

Problems

- For a matrix tuple, how to determine whether it is (strongly, Hurwitz) primitive or not?
- For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product of it?
- What is the maximum (strongly, Hurwitz) primitive index of all (strongly, Hurwitz) primitive m-tuples of n-by- n nonnegative matrices?

Problems

- For a matrix tuple, how to determine whether it is (strongly, Hurwitz) primitive or not?
- For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product of it?
- What is the maximum (strongly, Hurwitz) primitive index of all (strongly, Hurwitz) primitive m-tuples of n-by- n nonnegative matrices?

Problems

- For a matrix tuple, how to determine whether it is (strongly, Hurwitz) primitive or not?
- For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product of it?
- What is the maximum (strongly, Hurwitz) primitive index of all (strongly, Hurwitz) primitive m-tuples of n-by- n nonnegative matrices?

(Strongly) primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices. For each finite sequence $\alpha=\alpha_{1} \cdots \alpha_{k}$ over $[m]=\{1,2 \ldots, m\}$, write \mathcal{A}_{α} for $A_{\alpha_{1}} \cdots A_{\alpha_{k}}$ and call it a product over \mathcal{A} of length k

- The m-tuple \mathcal{A} is called primitive if there exists a finite sequence α over [m] such that

The minimum length of positive products over \mathcal{A} is called the primitive index of

- The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length $-k$ sequence α over $[m$] such that

The minimum such integer k is called the strongly primitive index of \mathcal{A}.

(Strongly) primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices. For each finite sequence $\alpha=\alpha_{1} \cdots \alpha_{k}$ over $[m]=\{1,2 \ldots, m\}$, write \mathcal{A}_{α} for $A_{\alpha_{1}} \cdots A_{\alpha_{k}}$ and call it a product over \mathcal{A} of length k.
$>$ The m-tuple \mathcal{A} is called primitive if there exists a finite sequence α over [m] such that

The minimum length of positive products over \mathcal{A} is called the primitive index of

- The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length $-k$ sequence α over [m] such that

The minimum such integer k is called the strongly primitive index of \mathcal{A}.

(Strongly) primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices. For each finite sequence $\alpha=\alpha_{1} \cdots \alpha_{k}$ over $[m]=\{1,2 \ldots, m\}$, write \mathcal{A}_{α} for $A_{\alpha_{1}} \cdots A_{\alpha_{k}}$ and call it a product over \mathcal{A} of length k.

- The m-tuple \mathcal{A} is called primitive if there exists a finite sequence α over [m] such that

$$
\mathcal{A}_{\alpha}>0
$$

- The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length- k sequence α over $[m]$ such that

(Strongly) primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices. For each finite sequence $\alpha=\alpha_{1} \cdots \alpha_{k}$ over $[m]=\{1,2 \ldots, m\}$, write \mathcal{A}_{α} for $A_{\alpha_{1}} \cdots A_{\alpha_{k}}$ and call it a product over \mathcal{A} of length k.

- The m-tuple \mathcal{A} is called primitive if there exists a finite sequence α over [m] such that

$$
\mathcal{A}_{\alpha}>0
$$

The minimum length of positive products over \mathcal{A} is called the primitive index of \mathcal{A}.
\rightarrow The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length $-k$ sequence α over $[m$] such that

The minimum such integer k is called the strongly primitive index of \mathcal{A}.

(Strongly) primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices. For each finite sequence $\alpha=\alpha_{1} \cdots \alpha_{k}$ over $[m]=\{1,2 \ldots, m\}$, write \mathcal{A}_{α} for $A_{\alpha_{1}} \cdots A_{\alpha_{k}}$ and call it a product over \mathcal{A} of length k.

- The m-tuple \mathcal{A} is called primitive if there exists a finite sequence α over [m] such that

$$
\mathcal{A}_{\alpha}>0
$$

The minimum length of positive products over \mathcal{A} is called the primitive index of \mathcal{A}.

- The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length- k sequence α over [m] such that

$$
\mathcal{A}_{\alpha}>0
$$

The minimum such integer k is called the strongly primitive index of \mathcal{A}.

(Strongly) primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices. For each finite sequence $\alpha=\alpha_{1} \cdots \alpha_{k}$ over $[m]=\{1,2 \ldots, m\}$, write \mathcal{A}_{α} for $A_{\alpha_{1}} \cdots A_{\alpha_{k}}$ and call it a product over \mathcal{A} of length k.

- The m-tuple \mathcal{A} is called primitive if there exists a finite sequence α over [m] such that

$$
\mathcal{A}_{\alpha}>0
$$

The minimum length of positive products over \mathcal{A} is called the primitive index of \mathcal{A}.

- The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length- k sequence α over [m] such that

$$
\mathcal{A}_{\alpha}>0
$$

The minimum such integer k is called the strongly primitive index of \mathcal{A}.

Types of sequences

Let $\alpha=\alpha_{1} \cdots \alpha_{k}$ be a sequence over a set X.

- For any $x \in X$, we denote the number of occurrences of x in the word α by $|\alpha|_{x}$, that is

$$
|\alpha|_{x}=\left|\left\{i \in[k]: \alpha_{i}=x\right\}\right| .
$$

- The type of α, denoted by $\mathrm{t}(\alpha)$, is the vector in \mathbb{N}^{X} such that $t^{\prime}(\alpha)(x)=|\alpha|^{\prime}$

$$
\mathrm{t}(\alpha)=(3,2,0,2) .
$$

Types of sequences

Let $\alpha=\alpha_{1} \cdots \alpha_{k}$ be a sequence over a set X.

- For any $x \in X$, we denote the number of occurrences of x in the word α by $|\alpha|_{x}$, that is

$$
|\alpha|_{x}=\left|\left\{i \in[k]: \alpha_{i}=x\right\}\right| .
$$

- The type of α, denoted by $\mathrm{t}(\alpha)$, is the vector in \mathbb{N}^{X} such that

$$
\mathrm{t}(\alpha)(x)=|\alpha|_{x}
$$

for each $x \in X$.
Example
The type of the sequence $\alpha=1442112$ over $\{1,2,3,4\}$ is

$$
\mathrm{t}(\alpha)=(3,2,0,2) .
$$

Types of sequences

Let $\alpha=\alpha_{1} \cdots \alpha_{k}$ be a sequence over a set X.

- For any $x \in X$, we denote the number of occurrences of x in the word α by $|\alpha|_{x}$, that is

$$
|\alpha|_{x}=\left|\left\{i \in[k]: \alpha_{i}=x\right\}\right|
$$

- The type of α, denoted by $\mathrm{t}(\alpha)$, is the vector in \mathbb{N}^{X} such that

$$
\mathrm{t}(\alpha)(x)=|\alpha|_{x}
$$

for each $x \in X$.

Example

The type of the sequence $\alpha=1442112$ over $\{1,2,3,4\}$ is

$$
\mathrm{t}(\alpha)=(3,2,0,2)
$$

Hurwitz products and Hurwitz primitivity
Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ an m-tuple of nonnegative n-by- n matrices. For each $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right) \in \mathbb{N}^{m}$, let

$$
\mathcal{A}^{\tau}=\sum_{\alpha: \mathrm{t}(\alpha)=\tau} \mathcal{A}_{\alpha} .
$$

We call \mathcal{A}^{τ} a Hurwitz product of \mathcal{A} of length $|\tau|:=\sum_{i=1}^{m} \tau_{i}$.
\rightarrow The tuple \mathcal{A} is Hurwitz primitive if it has a positive Hurwitz product.

- The minimum length of positive Hurwitz products is called the Hurwitz primitive index of \mathcal{A}.

Example
$\rightarrow \mathcal{A}=\left(A_{1}, A_{2}, A_{3}\right)$
$\Rightarrow A^{(1,3,0)}=A_{1} A_{2}^{3}+A_{2} A_{1} A_{2}^{2}+A_{2}^{2} A_{1} A_{2}+A_{2}^{3} A_{1}$.

Hurwitz products and Hurwitz primitivity

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ an m-tuple of nonnegative n-by- n matrices. For each $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right) \in \mathbb{N}^{m}$, let

$$
\mathcal{A}^{\tau}=\sum_{\alpha: \mathrm{t}(\alpha)=\tau} \mathcal{A}_{\alpha} .
$$

We call \mathcal{A}^{τ} a Hurwitz product of \mathcal{A} of length $|\tau|:=\sum_{i=1}^{m} \tau_{i}$.

- The tuple \mathcal{A} is Hurwitz primitive if it has a positive Hurwitz product.
\rightarrow The minimum length of positive Hurwitz products is called the Hurwitz primitive index of \mathcal{A}.

Example

- $\mathcal{A}=\left(A_{1}, A_{2}, A_{3}\right)$
$>\mathcal{A}^{(1,3,0)}=A_{1} A_{2}^{3}+A_{2} A_{1} A_{2}^{2}+A_{2}^{2} A_{1} A_{2}+A_{2}^{3} A_{1}$

Hurwitz products and Hurwitz primitivity

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ an m-tuple of nonnegative n-by- n matrices. For each $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right) \in \mathbb{N}^{m}$, let

$$
\mathcal{A}^{\tau}=\sum_{\alpha: \mathrm{t}(\alpha)=\tau} \mathcal{A}_{\alpha} .
$$

We call \mathcal{A}^{τ} a Hurwitz product of \mathcal{A} of length $|\tau|:=\sum_{i=1}^{m} \tau_{i}$.

- The tuple \mathcal{A} is Hurwitz primitive if it has a positive Hurwitz product.
- The minimum length of positive Hurwitz products is called the Hurwitz primitive index of \mathcal{A}.

Example

- $\mathcal{A}=\left(A_{1}, A_{2}, A_{3}\right)$
$-A^{(1,3,0)}=A_{1} A_{2}^{3}+A_{2} A_{1} A_{2}^{2}+A_{2}^{2} A_{1} A_{2}+A_{2}^{3} A_{1}$

Hurwitz products and Hurwitz primitivity

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ an m-tuple of nonnegative n-by- n matrices. For each $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right) \in \mathbb{N}^{m}$, let

$$
\mathcal{A}^{\tau}=\sum_{\alpha: \mathrm{t}(\alpha)=\tau} \mathcal{A}_{\alpha} .
$$

We call \mathcal{A}^{τ} a Hurwitz product of \mathcal{A} of length $|\tau|:=\sum_{i=1}^{m} \tau_{i}$.

- The tuple \mathcal{A} is Hurwitz primitive if it has a positive Hurwitz product.
- The minimum length of positive Hurwitz products is called the Hurwitz primitive index of \mathcal{A}.

Example

- $\mathcal{A}=\left(A_{1}, A_{2}, A_{3}\right)$.
$-\mathcal{A}^{(1,3,0)}=A_{1} A_{2}^{3}+A_{2} A_{1} A_{2}^{2}+A_{2}^{2} A_{1} A_{2}+A_{2}^{3} A_{1}$.

Hierarchy of primitivities

\{strongly primitive matrix tuple $\} \subsetneq\{$ primitive matrix tuple $\}$ $\subsetneq\{$ Hurwitz primitive matrix tuple $\}$

Determine Problems

- [Gerencsér-Gusev-Jungers ${ }^{2}$, 2018] The determine problem of primitivity is NP-hard (even for two matrices).
- The algorithmic complexity of determining Hurwitz primitivity is still unknown.

[^3]
Determine Problems

- [Gerencsér-Gusev-Jungers ${ }^{2}$, 2018] The determine problem of primitivity is NP-hard (even for two matrices).
- The algorithmic complexity of determining Hurwitz primitivity is still unknown.

[^4]
Maximum (Hurwitz) primitive index

- $\mathrm{p}(n, m) \doteq$ the maximum primitive index of all primitive m-tuples of n-by- n matrices.
- $\mathrm{p}(n) \doteq \max _{m \geq 1} \mathrm{p}(n, m)$.
$\rightarrow h p(n, m) \doteq$ the maximum Hurwitz primitive index of all Hurwitz primitive m-tuples of n-by- n matrices.

${ }^{3}$ Balázs Gerencsér, Vladimir V. Gusev n Raphaël M. Jungers (2018). "Primitive sets of nonnegative matrices and synchronizing automata'
${ }^{4}$ D. D. Olesky, Bryan Shader и P. van den Driessche (2002). "Exponents of tuples of nonnegative

Maximum (Hurwitz) primitive index

- $\mathrm{p}(n, m) \doteq$ the maximum primitive index of all primitive m-tuples of n-by- n matrices.
- $\mathrm{p}(n) \doteq \max _{m \geq 1} \mathrm{p}(n, m)$.
- $\mathrm{hp}(n, m) \doteq$ the maximum Hurwitz primitive index of all Hurwitz primitive m-tuples of n-by- n matrices.

Maximum (Hurwitz) primitive index

- $\mathrm{p}(n, m) \doteq$ the maximum primitive index of all primitive m-tuples of n-by- n matrices.
- $\mathrm{p}(n) \doteq \max _{m \geq 1} \mathrm{p}(n, m)$.
- $\mathrm{hp}(n, m) \doteq$ the maximum Hurwitz primitive index of all Hurwitz primitive m-tuples of n-by- n matrices.

Theorem (Gerencsér-Gusev-Jungers ${ }^{3}$, 2018)
$\lim _{n \rightarrow+\infty} \frac{\log p(n)}{n}=\frac{\log 3}{3}$.
Theorem (Olesky-Shader-Driessche ${ }^{4}$, 2002)
$h p(n, m)=\Theta\left(n^{m+1}\right)$

[^5]
Maximum (Hurwitz) primitive index

- $\mathrm{p}(n, m) \doteq$ the maximum primitive index of all primitive m-tuples of n-by- n matrices.
- $\mathrm{p}(n) \doteq \max _{m \geq 1} \mathrm{p}(n, m)$.
- $\mathrm{hp}(n, m) \doteq$ the maximum Hurwitz primitive index of all Hurwitz primitive m-tuples of n-by- n matrices.

Theorem (Gerencsér-Gusev-Jungers ${ }^{3}$, 2018)
$\lim _{n \rightarrow+\infty} \frac{\log p(n)}{n}=\frac{\log 3}{3}$.
Theorem (Olesky-Shader-Driessche ${ }^{4}$, 2002)
$\operatorname{hp}(n, m)=\Theta\left(n^{m+1}\right)$.

[^6]
Two subfamilies of square matrices

In many applications, the matrices that appear are (doubly) stochastic matrices.
\rightarrow The set of nonnegative n-by-n matrices that has no zero rows is denoted by $N Z_{1}(n)$. (row-stochastic matrix)

- The set of nonnegative n-by-n matrices that has no zero rows and no zero columns is denoted by $N Z_{2}(n)$. (doubly-stochastic matrix)

Two subfamilies of square matrices

In many applications, the matrices that appear are (doubly) stochastic matrices.

- The set of nonnegative n-by- n matrices that has no zero rows is denoted by $\mathrm{NZ}_{1}(n)$. (row-stochastic matrix)
- The set of nonnegative n-by- n matrices that has no zero rows and no zero columns is denoted by $\mathrm{NZ}_{2}(n)$. (doubly-stochastic matrix)

Two subfamilies of square matrices

In many applications, the matrices that appear are (doubly) stochastic matrices.

- The set of nonnegative n-by- n matrices that has no zero rows is denoted by $\mathrm{NZ}_{1}(n)$. (row-stochastic matrix)
- The set of nonnegative n-by- n matrices that has no zero rows and no zero columns is denoted by $\mathrm{NZ}_{2}(n)$. (doubly-stochastic matrix)

Block permutation matrices

Let A be an n-by- n matrix. Let $\pi=\left(\pi_{1}, \ldots, \pi_{r}\right)$ be a partition of [n]. We say that A preserves the partition π if there exists a permutation $\sigma \in$ Sym $_{r}$ such that
$A\left(\pi_{i}, \pi_{j}\right)=0$ whenever $j \neq \sigma(i)$.

Two characterization theorems

- A tuple of nonnegative matrices \mathcal{A} is irreducible if $\sum_{A \in \mathcal{A}} A$ is irreducible.
\rightarrow A partition is non-trivial if it contains at least two parts.

```
Theorem (Protasov-Voynov}\mp@subsup{}{}{5},2012
Let }A\mathrm{ be an irreducible tuple of }\textrm{NI}\mp@subsup{7}{2}{\prime-matrices. The tuple }\mathcal{A}\mathrm{ is not primitive if and only
if there exists a non-trivial partition }\pi\mathrm{ such that every matrix in }\mathcal{A}\mathrm{ preserves }
Theorem (Protasov}\mp@subsup{}{}{6},2013
I et A}\mathrm{ be an irreducible tuple of NZ _-matrices. The tuple A is not Hurwitz primitive if
and only if there exists a non-trivial partition }\pi\mathrm{ such that every matrix in A
and all these permutations corresponding to members of \mathcal{A commute with each other.}
```


Two characterization theorems

- A tuple of nonnegative matrices \mathcal{A} is irreducible if $\sum_{A \in \mathcal{A}} A$ is irreducible.
- A partition is non-trivial if it contains at least two parts.

```
Theorem (Protasov-Voynov}\mp@subsup{}{}{5},2012
let }A\mathrm{ be an irreducible tuple of NIZ_-matrices. The tuple }\mathcal{A}\mathrm{ is not primitive if and only
if there exists a non-trivial partition }\pi\mathrm{ such that every matrix in }\mathcal{A}\mathrm{ preserves }
Theorem (Protasov}\mp@subsup{}{}{6},2013
Let A be an irreducible tuple of NZ _matrices. The tuple A is not Hurwitz primitive if
and only if there exists a non-trivial partition }\pi\mathrm{ such that every matrix in A
and all these permutations corresponding to members of \mathcal{A commute with each other.}
```


Two characterization theorems

- A tuple of nonnegative matrices \mathcal{A} is irreducible if $\sum_{A \in \mathcal{A}} A$ is irreducible.
- A partition is non-trivial if it contains at least two parts.

Theorem (Protasov-Voynov ${ }^{5}$, 2012)

Let \mathcal{A} be an irreducible tuple of NZ_{2}-matrices. The tuple \mathcal{A} is not primitive if and only if there exists a non-trivial partition π such that every matrix in \mathcal{A} preserves π.

Theorem (Protasov6, 2013)
Let \mathcal{A} be an irreducible tuple of NZ_{1}-matrices. The tuple \mathcal{A} is not Hurwitz primitive if and only if there exists a non-trivial partition π such that every matrix in \mathcal{A} preserves π and all these permutations corresponding to members of \mathcal{A} commute with each other

[^7]
Two characterization theorems

- A tuple of nonnegative matrices \mathcal{A} is irreducible if $\sum_{A \in \mathcal{A}} A$ is irreducible.
- A partition is non-trivial if it contains at least two parts.

Theorem (Protasov-Voynov ${ }^{5}$, 2012)

Let \mathcal{A} be an irreducible tuple of NZ_{2}-matrices. The tuple \mathcal{A} is not primitive if and only if there exists a non-trivial partition π such that every matrix in \mathcal{A} preserves π.

Theorem (Protasov ${ }^{6}$, 2013)

Let \mathcal{A} be an irreducible tuple of NZ_{1}-matrices. The tuple \mathcal{A} is not Hurwitz primitive if and only if there exists a non-trivial partition π such that every matrix in \mathcal{A} preserves π and all these permutations corresponding to members of \mathcal{A} commute with each other.

[^8]
Different proofs

Characterization theorem of primitive $\mathrm{NZ}_{2}(n)$-matrix tuples:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019),
- Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive $\mathrm{NZ}_{1}(n)$-matrix tuples

- The origin proof is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002),
- Wu and Z.(2023) present a unified combinatorial proof of these two characterization theorems. This proof provides a faster determine algorithm of ('lurwitz) primitivity.

Different proofs

Characterization theorem of primitive $\mathrm{NZ}_{2}(n)$-matrix tuples:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
\rightarrow Using analytic method, Protasov (2021) gives a new proof.
Characterization theorem of Hurwitz primitive $\mathrm{NZ}_{1}(n)$-matrix tuples:
\rightarrow The origin proof is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).
- Wu and Z.(2023) present a unified combinatorial proof of these two characterization theorems. This proof provides a faster determine algorithm of (Hurwitz) primitivity.

Different proofs

Characterization theorem of primitive $\mathrm{NZ}_{2}(n)$-matrix tuples:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive $N Z_{1}(n)$-matrix tuples:

- The origin proof is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).
- Wu and Z.(2023) present a unified combinatorial proof of these two characterization theorems. This proof provides a faster determine algorithm of (Hurwitz) primitivity.

Different proofs

Characterization theorem of primitive $\mathrm{NZ}_{2}(n)$-matrix tuples:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive $\mathrm{NZ}_{1}(n)$-matrix tuples:

- The origin proof is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).
- Wu and Z.(2023) present a unified combinatorial proof of these two characterization theorems. This proof provides a faster determine algorithm of (Hurwitz) primitivity.

Different proofs

Characterization theorem of primitive $\mathrm{NZ}_{2}(n)$-matrix tuples:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive $\mathrm{NZ}_{1}(n)$-matrix tuples:

- The origin proof is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).
- Wu and Z.(2023) present a unified combinatorial proof of these two characterization theorems. This proof provides a faster determine algorithm of (Hurwitz) primitivity.

A sketch of the proof (primitive)

Let \mathcal{A} be a m-tuple of nonnegative n-by- $n \mathrm{NZ}_{2}$-matrices.
Define \approx to be the binary relation on $[n]$ such that $i \approx j$ if for all $i^{\prime}, j^{\prime} \in[n]$ and for all finite sequence α over [m] satisfying

$$
\mathcal{A}_{\alpha}\left(i, i^{\prime}\right)>0 \quad \text { and } \quad \mathcal{A}_{\alpha}\left(j, j^{\prime}\right)>0,
$$

there exists $k \in[n]$ and a sequence β such that

$$
\mathcal{A}_{\beta}\left(i^{\prime}, k\right)>0 \quad \text { and } \quad \mathcal{A}_{\beta}\left(j^{\prime}, k\right)>0 .
$$

The relation \approx is called the stable relation of \mathcal{A}.
It is routine to verify the following statements

- The relation \approx is an equivalence relation
\rightarrow Let π be the partition which is formed by the equivalence class of \approx. The matrices in \mathcal{A} preserve π.
- The partition π is the unique minimal (finest) partition of $[n]$ such that all matrices in \mathcal{A} preserve it.

A sketch of the proof (primitive)

Let \mathcal{A} be a m-tuple of nonnegative n-by- $n \mathrm{NZ}_{2}$-matrices.
Define \approx to be the binary relation on $[n]$ such that $i \approx j$ if for all $i^{\prime}, j^{\prime} \in[n]$ and for all finite sequence α over [m] satisfying

$$
\mathcal{A}_{\alpha}\left(i, i^{\prime}\right)>0 \quad \text { and } \quad \mathcal{A}_{\alpha}\left(j, j^{\prime}\right)>0,
$$

there exists $k \in[n]$ and a sequence β such that

$$
\mathcal{A}_{\beta}\left(i^{\prime}, k\right)>0 \quad \text { and } \quad \mathcal{A}_{\beta}\left(j^{\prime}, k\right)>0 .
$$

The relation \approx is called the stable relation of \mathcal{A}.
It is routine to verify the following statements.

- The relation \approx is an equivalence relation.
- Let π be the partition which is formed by the equivalence class of \approx. The matrices in \mathcal{A} preserve π.
- The partition π is the unique minimal (finest) partition of [n] such that all matrices in \mathcal{A} preserve it.

A sketch of the proof (Hurwitz primitive)

Let \mathcal{A} be a m-tuple of nonnegative n-by- $n \mathrm{NZ}_{1}$-matrices.
Define $\stackrel{h}{\approx}$ to be the binary relation on [n] such that $i \stackrel{h}{\approx} j$ if for all $i^{\prime}, j^{\prime} \in[n]$ and for all vector $\tau \in \mathbb{N}^{m}$ satisfying

$$
\mathcal{A}^{\tau}\left(i, i^{\prime}\right)>0 \quad \text { and } \quad \mathcal{A}^{\tau}\left(j, j^{\prime}\right)>0,
$$

there exists $k \in[n]$ and a vector $\beta \in \mathbb{N}^{m}$ such that

$$
\mathcal{A}^{\gamma}\left(i^{\prime}, k\right)>0 \quad \text { and } \quad \mathcal{A}^{\gamma}\left(j^{\prime}, k\right)>0 .
$$

The relation $\stackrel{h}{\approx}$ is called the Hurwitz stable relation of \mathcal{A}.
It is routine to verify the following statements.

- The relation $\stackrel{h}{\approx}$ is an equivalence relation.
- Let π be the partition which is formed by the equivalence class of $\stackrel{h}{\approx}$. The matrices in \mathcal{A} preserve π.
- The partition π is the unique minimal (finest) partition of [n] such that all matrices in \mathcal{A} preserve π and all these permutations corresponding to members of \mathcal{A} commute with each other.

Algorithms

We can determine a given NZ_{1}-matrix tuple (resp., NZ_{2}-matrix tuple) whether is primitive (resp., Hurwitz primitive) or not by calculating the equivalence relation \approx (resp., $\stackrel{\text { h }}{\approx}$).
Then there is an algorithm
\rightarrow to determine primitivity for a given NZ_{1}-matrix tuple in $O\left(n^{2} m\right)$-time;

- to determine Hurwitz primitivity for a given NZ_{2}-matrix tuple in $\mathrm{O}\left(n^{2} m^{2}+n^{3} m\right)$

Algorithms

We can determine a given NZ_{1}-matrix tuple (resp., NZ_{2}-matrix tuple) whether is primitive (resp., Hurwitz primitive) or not by calculating the equivalence relation \approx (resp., $\stackrel{\text { h }}{\approx}$).
Then there is an algorithm

- to determine primitivity for a given NZ_{1}-matrix tuple in $O\left(n^{2} m\right)$-time;
- to determine Hurwitz primitivity for a given NZ_{2}-matrix tuple in $O\left(n^{2} m^{2}+n^{3} m\right)$.

Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.
$-\mathrm{p}_{X}(n) \doteq$ the maximum primitive index of all primitive tuples of n-by- $n X$-matrices;

- $h p_{X}(n) \doteq$ the maximum Hurwitz primitive index of all Hurwitz primitive tuples of n-by- $n X$-matrices.

We will present some results on $\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$.

Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.
$-\mathrm{p}_{X}(n) \doteq$ the maximum primitive index of all primitive tuples of n-by- $n X$-matrices;

- $h p_{X}(n) \doteq$ the maximum Hurwitz primitive index of all Hurwitz primitive tuples of n-by- $n X$-matrices.

We will present some results on $\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$.

$\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- [Blondel-Jungers-Olshevsky ${ }^{7}$, 2015]

$$
\frac{n^{2}}{2} \leq \mathrm{p}_{\mathrm{NZ}_{2}}(n) \leq 2 \mathrm{c}(n)+n-1 \leq O\left(n^{3}\right)
$$

- [Gusev ${ }^{8}$, 2013]

$$
(n-1)^{2} \leq h p_{N Z_{1}}(n) .
$$

- $\left[\mathrm{Wu}-\mathrm{Z} .{ }^{9}, 2023\right]$

$$
\operatorname{hp}_{N Z_{1}}(n) \leq 2 c(n)+\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor=O\left(n^{3}\right)
$$

[^9]
$\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- [Blondel-Jungers-Olshevsky ${ }^{7}$, 2015]

$$
\frac{n^{2}}{2} \leq \mathrm{p}_{\mathrm{NZ}_{2}}(n) \leq 2 \mathrm{c}(n)+n-1 \leq O\left(n^{3}\right)
$$

- [Gusev $\left.{ }^{8}, 2013\right]$

$$
(n-1)^{2} \leq \mathrm{hp}_{\mathrm{NZ}_{1}}(n)
$$

- $\left[\mathrm{Wu}-\mathrm{Z} .{ }^{9}, 2023\right]$

[^10]
$\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- [Blondel-Jungers-Olshevsky ${ }^{7}$, 2015]

$$
\frac{n^{2}}{2} \leq \mathrm{p}_{\mathrm{NZ}_{2}}(n) \leq 2 \mathrm{c}(n)+n-1 \leq O\left(n^{3}\right)
$$

- [Gusev ${ }^{8}$, 2013]

$$
(n-1)^{2} \leq \mathrm{hp}_{\mathrm{NZ}_{1}}(n)
$$

- $\left[\mathrm{Wu}-\mathrm{Z} .{ }^{9}, 2023\right]$

$$
\mathrm{hp}_{\mathrm{NZ}_{1}}(n) \leq 2 \mathrm{c}(n)+\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor=O\left(n^{3}\right)
$$

[^11]
Synchronizing automata

- A square Boolean matrix is called an automaton matrix if each row of A contains a unique 1.
- An n-state automaton is a tuple of n-by-n automaton matrices.
- An automaton \mathcal{A} is synchronizing if there exists a product \mathcal{A}_{α} which contains a positive column.
- The minimum length of such products is called synchronizing index of \mathcal{A}

Example (4-state synchronizing automaton)

Synchronizing automata

- A square Boolean matrix is called an automaton matrix if each row of A contains a unique 1.
- An n-state automaton is a tuple of n-by- n automaton matrices.
\rightarrow An automaton \mathcal{A} is synchronizing if there exists a product \mathcal{A}_{α} which contains a positive column
- The minimum length of such products is called synchronizing index of \mathcal{A}.

Example (4-state synchronizing automaton)

Synchronizing automata

- A square Boolean matrix is called an automaton matrix if each row of A contains a unique 1.
- An n-state automaton is a tuple of n-by- n automaton matrices.
- An automaton \mathcal{A} is synchronizing if there exists a product \mathcal{A}_{α} which contains a positive column.
- The minimum length of such products is called synchronizing index of \mathcal{A}.

Example (4-state synchronizing automaton)

Synchronizing automata

- A square Boolean matrix is called an automaton matrix if each row of A contains a unique 1.
- An n-state automaton is a tuple of n-by- n automaton matrices.
- An automaton \mathcal{A} is synchronizing if there exists a product \mathcal{A}_{α} which contains a positive column.
- The minimum length of such products is called synchronizing index of \mathcal{A}.

Example (4-state synchronizing automaton)

Synchronizing automata

- A square Boolean matrix is called an automaton matrix if each row of A contains a unique 1.
- An n-state automaton is a tuple of n-by- n automaton matrices.
- An automaton \mathcal{A} is synchronizing if there exists a product \mathcal{A}_{α} which contains a positive column.
- The minimum length of such products is called synchronizing index of \mathcal{A}.

Example (4-state synchronizing automaton)

Černý Conjecture

Define the Černý function $c(n)$ as the maximum synchronizing index of all synchronizing automata with n states.

Conjecture (Černý, 1971¹0)
$\mathrm{c}(n)=(n-1)^{2}$

Černý Conjecture

Define the Černý function $c(n)$ as the maximum synchronizing index of all synchronizing automata with n states.

Conjecture (Černý, 1971^{10})
$c(n)=(n-1)^{2}$.

[^12]
Some progresses on Černý Conjecture

In 1964, Černý ${ }^{11}$ found a family of automata $\left\{\mathcal{C}_{n}\right\}$ such that \mathcal{C}_{n} is an n-state synchronizing automaton whose synchronizing index equals $(n-1)^{2}$. This shows that

[^13]
Some progresses on Černý Conjecture

In 1964, Černý ${ }^{11}$ found a family of automata $\left\{\mathcal{C}_{n}\right\}$ such that \mathcal{C}_{n} is an n-state synchronizing automaton whose synchronizing index equals $(n-1)^{2}$. This shows that

$$
(n-1)^{2} \leq \mathrm{c}(n)
$$

[^14]
Some progresses on Černý Conjecture

In 1964, Černy ${ }^{11}$ found a family of automata $\left\{\mathcal{C}_{n}\right\}$ such that \mathcal{C}_{n} is an n-state synchronizing automaton whose synchronizing index equals $(n-1)^{2}$. This shows that

$$
(n-1)^{2} \leq \mathrm{c}(n)
$$

${ }^{11}$ Ján Černý (1964). "A remark on homogeneous experiments with finite automata". B: Mat.-Fyz. Časopis. Sloven. Akad. Vied. 14. (Slovak. English summary), c. 208-216. ISSN: 0543-0046.

Some progresses on Černý Conjecture, Cont'd

There are some upper bounds of $c(n)$ which roughly equals $\frac{n^{3}}{6}$.
$\Rightarrow\left[\right.$ Frankl $\left.{ }^{12}-\operatorname{Pin}^{13} 1982\right] \mathrm{c}(n) \leq \frac{n^{3}-n}{6} \approx 0.167 n^{3}$

- $\left[\right.$ Szykuła 14 2018] $c(n) \leq \frac{85059 n^{3}+90024 n^{2}+196504 n-10648}{511104} \approx 0.166 n^{3}$
- $\left[\right.$ Shitov $\left.^{15} 2019\right] \mathrm{c}(n) \leq\left(\frac{7}{48}+\frac{15625}{708768}\right) n^{3}+o\left(n^{3}\right) \approx 0.165 n^{3}$

[^15]
Some progresses on Černý Conjecture, Cont'd

There are some upper bounds of $c(n)$ which roughly equals $\frac{n^{3}}{6}$.

- [Frankl $\left.{ }^{12}-\operatorname{Pin}^{13} 1982\right] \mathrm{c}(n) \leq \frac{n^{3}-n}{6} \approx 0.167 n^{3}$

$$
\begin{aligned}
& >\left[\text { Szykuła }^{14} 2018\right] c(n) \leq \frac{85059 n^{3}+90024 n^{2}+196504 n-10648}{511104} \approx 0.166 n^{3} \\
& >\left[\text { Shitov }^{15} 2019\right] c(n) \leq\left(\frac{7}{48}+\frac{15625}{798768}\right) n^{3}+o\left(n^{3}\right) \approx 0.165 n^{3}
\end{aligned}
$$

[^16]
Some progresses on Černý Conjecture, Cont'd

There are some upper bounds of $c(n)$ which roughly equals $\frac{n^{3}}{6}$.

- [Frankl ${ }^{12}$ - $^{14}{ }^{13}$ 1982] $c(n) \leq \frac{n^{3}-n}{6} \approx 0.167 n^{3}$
- $\left[\right.$ Szykuła ${ }^{14}$ 2018] $c(n) \leq \frac{85059 n^{3}+90024 n^{2}+196504 n-10648}{511104} \approx 0.166 n^{3}$
$\rightarrow\left[\right.$ Shitov 15 2019] $c(n) \leq\left(\frac{7}{48}+\frac{15625}{798768}\right) n^{3}+o\left(n^{3}\right) \approx 0.165 n^{3}$

[^17]
Some progresses on Černý Conjecture, Cont'd

There are some upper bounds of $c(n)$ which roughly equals $\frac{n^{3}}{6}$.

- [Frankl ${ }^{12}$-Pin 13 1982] $c(n) \leq \frac{n^{3}-n}{6} \approx 0.167 n^{3}$
- [Szykuła $\left.{ }^{14} 2018\right] c(n) \leq \frac{85059 n^{3}+90024 n^{2}+196504 n-10648}{51104} \approx 0.166 n^{3}$
- [Shitov $\left.{ }^{15} 2019\right] c(n) \leq\left(\frac{7}{48}+\frac{15625}{798768}\right) n^{3}+o\left(n^{3}\right) \approx 0.165 n^{3}$

[^18]Connection between primitive NZ_{2}-matrix tuples and Synchronizing Automata

Let \mathcal{A} be an primitive tuple of n-by- n Boolean NZ_{2}-matrix.

- $\mathcal{C} \doteq\{C: C \leq A \in \mathcal{A}$ and C is an automaton matrix $\}$.

Observation (Blondel-Jungers-Olshevsky ${ }^{16}$, 2015)
The automaton \mathcal{C} is synchronizing.

Connection between primitive NZ_{2}-matrix tuples and Synchronizing Automata

Let \mathcal{A} be an primitive tuple of n-by- n Boolean NZ_{2}-matrix.

- $\mathcal{C} \doteq\{C: C \leq A \in \mathcal{A}$ and C is an automaton matrix $\}$.

Observation (Blondel-Jungers-Olshevsky ${ }^{16}$, 2015)
The automaton \mathcal{C} is synchronizing.

[^19]Connection between Hurwitz primitive NZ_{1}-matrix tuples and Synchronizing Automata

Let \mathcal{A} be an Hurwitz primitive tuple of n-by- n Boolean NZ_{1}-matrix.
$-\mathcal{B} \doteq \mathcal{A} \cup\left\{A_{i} A_{j}+A_{j} A_{i}: A_{i}, A_{j} \in \mathcal{A}\right\}$.

- $\mathcal{C} \doteq\{C: C \leq B \in \mathcal{B}$ and C is an automaton matrix $\}$.

Observation (Wu-Z., 2023)
The automaton \mathcal{C} is synchronizing.

Connection between Hurwitz primitive NZ_{1}-matrix tuples and Synchronizing Automata

Let \mathcal{A} be an Hurwitz primitive tuple of n-by- n Boolean NZ_{1}-matrix.
$-\mathcal{B} \doteq \mathcal{A} \cup\left\{A_{i} A_{j}+A_{j} A_{i}: A_{i}, A_{j} \in \mathcal{A}\right\}$.

- $\mathcal{C} \doteq\{C: C \leq B \in \mathcal{B}$ and C is an automaton matrix $\}$.

Observation (Wu-Z., 2023)
The automaton \mathcal{C} is synchronizing.

Proof of the upper bound of $h p_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 c(n)$
\Rightarrow Since the digraph D is strongly connected, there exists a closed walk W which visits every vertex and has length at most $\left[\frac{(n+1)^{2}}{4}\right]$
- For all vertices x and y, we "connect" W and one of τ '-walks in a proper way to construct a walk from x to y.

Proof of the upper bound of $h p_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 c(n)$
- Since the digraph D is strongly connected, there exists a closed walk W which visits every vertex and has length at most $\left|\frac{(n+1)^{2}}{4}\right|$
- For all vertices x and y, we "connect" W and one of τ^{\prime}-walks in a proper way to construct a walk from x to y.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 \mathrm{c}(n)$.
\Rightarrow Since the digraph D is strongly connected, there exists a closed walk W which visits every vertex and has length at most $\left\lvert\, \frac{(n+1)^{2}}{4}\right.$
- For all vertices x and y, we "connect" W and one of τ^{\prime}-walks in a proper way to construct a walk from x to y.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 \mathrm{c}(n)$.
- Since the digraph D is strongly connected, there exists a closed walk W which visits every vertex and has length at most $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$.
- For all vertices x and y, we "connect" W and one of τ^{\prime}-walks in a proper way to construct a walk from x to y.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 \mathrm{c}(n)$.
- Since the digraph D is strongly connected, there exists a closed walk W which visits every vertex and has length at most $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$.
- For all vertices x and y, we "connect" W and one of τ^{\prime}-walks in a proper way to construct a walk from x to y.

Strongly primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices.

- The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length- k sequence α over [m] such that

$$
\mathcal{A}_{\alpha}>0
$$

The minimum such integer k is called the strongly primitive index of \mathcal{A}, denoted by $\operatorname{sp}(\mathcal{A})$.

Strongly primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by- n matrices.

- The m-tuple \mathcal{A} is called strongly primitive if there exists a positive integer k such that for all length- k sequence α over $[m]$ such that

$$
\mathcal{A}_{\alpha}>0
$$

The minimum such integer k is called the strongly primitive index of \mathcal{A}, denoted by $\operatorname{sp}(\mathcal{A})$.

Maximum strongly primitive matrix index

Theorem (Cohen-Sellers ${ }^{17}$, 1982)
For any strongly primitive n-by-n matrix tuple \mathcal{A},

$$
\operatorname{sp}(\mathcal{A}) \leq 2^{n}-2
$$

Moreover, there exists a strongly primitive n-by-n matrix tuple \mathcal{B} such that $\operatorname{sp}(\mathcal{B})=2^{n}-2$.

- Define
$\gamma(n):=\min \left\{|\mathcal{A}|: g(\mathcal{A})=2^{n}-2, \mathcal{A}\right.$ is an order- n strongly primitve matrix set $\}$
- The Cohen-Sellers construction shows $\gamma(n) \leq 2^{n}-3$.
- [Cohen-Sellers, 1982] $\gamma(n)=$?

[^20]Lifespan in a primitive Boolean linear dynamical system

Maximum strongly primitive matrix index

Theorem (Cohen-Sellers ${ }^{17}$, 1982)
For any strongly primitive n-by-n matrix tuple \mathcal{A},

$$
\operatorname{sp}(\mathcal{A}) \leq 2^{n}-2
$$

Moreover, there exists a strongly primitive n-by-n matrix tuple \mathcal{B} such that $\operatorname{sp}(\mathcal{B})=2^{n}-2$.

- Define
$\gamma(n):=\min \left\{|\mathcal{A}|: g(\mathcal{A})=2^{n}-2, \mathcal{A}\right.$ is an order- n strongly primitve matrix set $\}$.
- The Cohen-Sellers construction shows $\gamma(n) \leq 2^{n}-3$.
- [Cohen-Sellers, 1982] $\gamma(n)=$?
\qquad

[^21]Lifespan in a primitive Boolean linear dynamical system

Maximum strongly primitive matrix index

Theorem (Cohen-Sellers ${ }^{17}$, 1982)
For any strongly primitive n-by-n matrix tuple \mathcal{A},

$$
\operatorname{sp}(\mathcal{A}) \leq 2^{n}-2
$$

Moreover, there exists a strongly primitive n-by-n matrix tuple \mathcal{B} such that $\operatorname{sp}(\mathcal{B})=2^{n}-2$.

- Define
$\gamma(n):=\min \left\{|\mathcal{A}|: g(\mathcal{A})=2^{n}-2, \mathcal{A}\right.$ is an order- n strongly primitve matrix set $\}$.
- The Cohen-Sellers construction shows $\gamma(n) \leq 2^{n}-3$.
$\frac{{ }^{17} \mathrm{~J} \text {. E. Cohen и P. H. Sellers (1982). "Sets of nonnegative matrices with positive inhomogeneous }}{}$ products". B: Linear Algebra and its Application 47, c. 185-192.

Lifespan in a primitive Boolean linear dynamical system

Maximum strongly primitive matrix index

Theorem (Cohen-Sellers ${ }^{17}$, 1982)
For any strongly primitive n-by-n matrix tuple \mathcal{A},

$$
\operatorname{sp}(\mathcal{A}) \leq 2^{n}-2
$$

Moreover, there exists a strongly primitive n-by-n matrix tuple \mathcal{B} such that $\operatorname{sp}(\mathcal{B})=2^{n}-2$.

- Define $\gamma(n):=\min \left\{|\mathcal{A}|: g(\mathcal{A})=2^{n}-2, \mathcal{A}\right.$ is an order- n strongly primitve matrix set $\}$.
- The Cohen-Sellers construction shows $\gamma(n) \leq 2^{n}-3$.
- [Cohen-Sellers, 1982] $\gamma(n)=$?

[^22]Lifespan in a primitive Boolean linear dynamical system

Maximum strongly primitive matrix index

Theorem (Cohen-Sellers ${ }^{17}$, 1982)
For any strongly primitive n-by-n matrix tuple \mathcal{A},

$$
\operatorname{sp}(\mathcal{A}) \leq 2^{n}-2
$$

Moreover, there exists a strongly primitive n-by-n matrix tuple \mathcal{B} such that $\operatorname{sp}(\mathcal{B})=2^{n}-2$.

- Define $\gamma(n):=\min \left\{|\mathcal{A}|: g(\mathcal{A})=2^{n}-2, \mathcal{A}\right.$ is an order- n strongly primitve matrix set $\}$.
- The Cohen-Sellers construction shows $\gamma(n) \leq 2^{n}-3$.
- [Cohen-Sellers, 1982] $\gamma(n)=$?
- [Wu-Z. ${ }^{18}$, 2015] $\gamma(n) \leq n$.
${ }^{17}$ J. Е. Cohen и P. H. Sellers (1982). "Sets of nonnegative matrices with positive inhomogeneous products". B: Linear Algebra and its Application 47, c. 185-192.
${ }^{18}$ Yaokun Wu и Yinfeng Zhu (2015). "Lifespan in a primitive Boolean linear dynamical system". B: The Electronic Journal of Combinatorics 22.Paper. \#P4.36, c. 1-21.

Our construction

Define $\mathcal{A}_{n}=\left\{A_{1}, \ldots, A_{n}\right\}$ such that

$$
A_{k}(i, j)= \begin{cases}1 & \text { if either } i=j \text { or } i=k \text { or } j=k \\ 0 & \text { otherwise }\end{cases}
$$

One can check that $\operatorname{sp}\left(\mathcal{A}_{n}\right)=2^{n}-2$.
Example

Our construction

Define $\mathcal{A}_{n}=\left\{A_{1}, \ldots, A_{n}\right\}$ such that

$$
A_{k}(i, j)= \begin{cases}1 & \text { if either } i=j \text { or } i=k \text { or } j=k \\ 0 & \text { otherwise }\end{cases}
$$

One can check that $\operatorname{sp}\left(\mathcal{A}_{n}\right)=2^{n}-2$.
Example

$$
\mathcal{A}_{4}=\left(\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right) .
$$

Motivation

- It is not yet known whether there is a polynomial-time algorithm for determining strong primitivity.
- Cohen-Seller's construction tells us that the strong primitivity index $\operatorname{sp}(n)$ can grow exponentially.
- To understand the strong primitivity, an important question is whether the strong primitivity index $\operatorname{sp}(n, m)$ can grow exponentially with respect to n and m.
- Our construction shows that $\operatorname{sp}(n, n)$ grows exponentially. This may be a sign that the strong primitivity can hardly be determined in polynomial time.

Motivation

- It is not yet known whether there is a polynomial-time algorithm for determining strong primitivity.
- Cohen-Seller's construction tells us that the strong primitivity index $\operatorname{sp}(n)$ can grow exponentially.
\rightarrow To understand the strong primitivity, an important question is whether the strong primitivity index $\operatorname{sp}(n, m)$ can grow exponentially with respect to n and m.
\rightarrow Our construction shows that $\mathrm{sp}(n, n)$ grows exponentially. This mav be a sign that the strong primitivity can hardly be determined in polynomial time.

Motivation

- It is not yet known whether there is a polynomial-time algorithm for determining strong primitivity.
- Cohen-Seller's construction tells us that the strong primitivity index $\operatorname{sp}(n)$ can grow exponentially.
- To understand the strong primitivity, an important question is whether the strong primitivity index $\operatorname{sp}(n, m)$ can grow exponentially with respect to n and m.
- Our construction shows that $\operatorname{sp}(n, n)$ grows exponentially. This may be a sign that the strong primitivity can hardly be determined in polynomial time.

Motivation

- It is not yet known whether there is a polynomial-time algorithm for determining strong primitivity.
- Cohen-Seller's construction tells us that the strong primitivity index $\operatorname{sp}(n)$ can grow exponentially.
- To understand the strong primitivity, an important question is whether the strong primitivity index $\operatorname{sp}(n, m)$ can grow exponentially with respect to n and m.
- Our construction shows that $\operatorname{sp}(n, n)$ grows exponentially. This may be a sign that the strong primitivity can hardly be determined in polynomial time.

Summary

	Primitivity		Hurwitz Primitivity		Strong primitivity
Assumption		NZ_{2}		NZ_{1}	
Determine problem	NP-hard	$O\left(n^{2} m\right)$	$?$	$O\left(n^{2} m^{2}+n^{3} m\right)$	$?$
Finding such a product	NP-hard	$O\left(n^{3} m\right)$	$?$	$O\left(n^{3} m^{2}\right)$	$/$
Lower bounds of indices	$3^{\frac{n}{3}(1-\epsilon)}$	$\frac{n^{2}}{2}$	$C n^{m+1}$	$(n-1)^{2}+1$	$2^{n}-2$
Upper bounds of indices	$3^{\frac{n}{3}(1+\epsilon)}$	$O\left(n^{3}\right)$	$m!m n^{m+1}+n^{2}$	$O\left(n^{3}\right)$	$2^{n}-2$

Thank you

Спасибо

[^0]: ${ }^{1} \mathrm{H}$. Wielandt (1959). "Unzerlegbare, nicht negative Matrizen". B: Mathematische Zeitschrift 52, 642-648.

[^1]: ${ }^{1} \mathrm{H}$. Wielandt (1959). "Unzerlegbare, nicht negative Matrizen". B: Mathematische Zeitschrift 52, 642-648.

[^2]: ${ }^{1} \mathrm{H}$. Wielandt (1959). "Unzerlegbare, nicht negative Matrizen". B: Mathematische Zeitschrift 52, 642-648.

[^3]: ${ }^{2}$ Balázs Gerencsér, Vladimir V. Gusev и Raphaël M. Jungers (2018). "Primitive sets of nonnegative matrices and synchronizing automata". B: SIAM J. Matrix Anal. Appl. 39.1, c. 83-98.

[^4]: ${ }^{2}$ Balázs Gerencsér, Vladimir V. Gusev и Raphaël M. Jungers (2018). "Primitive sets of nonnegative matrices and synchronizing automata". B: SIAM J. Matrix Anal. Appl. 39.1, c. 83-98.

[^5]: ${ }^{3}$ Balázs Gerencsér, Vladimir V. Gusev и Raphaël M. Jungers (2018). "Primitive sets of nonnegative matrices and synchronizing automata". B: SIAM J. Matrix Anal. Appl. 39.1, c. 83-98.
 'Exponents of tuples of nonnegative

[^6]: ${ }^{3}$ Balázs Gerencsér, Vladimir V. Gusev и Raphaël M. Jungers (2018). "Primitive sets of nonnegative matrices and synchronizing automata". B: SIAM J. Matrix Anal. Appl. 39.1, c. 83-98.
 ${ }^{4}$ D. D. Olesky, Bryan Shader и P. van den Driessche (2002). "Exponents of tuples of nonnegative matrices". B: т. 356, с. 123-134.

[^7]: ${ }^{5}$ V.Yu. Protasov и A.S. Voynov (2012). "Sets of nonnegative matrices without positive products". B: Linear Algebra and its Applications 437.3, c. 749-765.

[^8]: ${ }^{5}$ V.Yu. Protasov и A.S. Voynov (2012). "Sets of nonnegative matrices without positive products". B: Linear Algebra and its Applications 437.3, c. 749-765.
 ${ }^{6}$ V.Yu. Protasov (2013). "Classification of k-primitive sets of matrices". B: SIAM J. Matrix Anal. 34.3, c. 1174-1188.

[^9]: ${ }^{7}$ Vincent D. Blondel, Raphaël M. Jungers и Alex Olshevsky (2015). "On primitivity of sets of matrices". B: Automatica J. IFAC 61, c. 80-88.
 ${ }^{3}$ Vladimir V. Gusev (2013). "Lower bounds for the length of reset words in Eulerian automata Internat. J. Found. Comput. Sci. 24.2,
 ${ }^{9}$ Yaokun Wu и Yinfeng Zhu (2023). "Primitivity and Hurwitz Primitivity of Nonnegative Matrix Tuples: A Unified Approach"

[^10]: ${ }^{7}$ Vincent D. Blondel, Raphaël M. Jungers и Alex Olshevsky (2015). "On primitivity of sets of matrices". B: Automatica J. IFAC 61, c. 80-88.
 ${ }^{8}$ Vladimir V. Gusev (2013). "Lower bounds for the length of reset words in Eulerian automata". B: Internat. J. Found. Comput. Sci. 24.2, c. 251-262.
 ${ }^{9}$ Yaokun Wu u Yinfeng Zhu (2023). "Primitivity and Hurwitz Primitivity of Nonnegative Matrix

[^11]: ${ }^{7}$ Vincent D. Blondel, Raphaël M. Jungers и Alex Olshevsky (2015). "On primitivity of sets of matrices". B: Automatica J. IFAC 61, c. 80-88.
 ${ }^{8}$ Vladimir V. Gusev (2013). "Lower bounds for the length of reset words in Eulerian automata". B: Internat. J. Found. Comput. Sci. 24.2, c. 251-262.
 ${ }^{9}$ Yaokun Wu и Yinfeng Zhu (2023). "Primitivity and Hurwitz Primitivity of Nonnegative Matrix Tuples: A Unified Approach". B: SIAM Journal on Matrix Analysis and Applications 44.1, c. 196-211.

[^12]: ${ }^{10}$ Ján Černý, Alica Pirická u Blanka Rosenauerová (1971). "On directable automata". B: Kybernetika (Prague) 7, c. 289-298. ISSN: 0023-5954.

[^13]: ${ }^{11}$ Ján Černý (1964). "A remark on homogeneous experiments with finite automata". B: Mat.-Fyz. Casopis. Sloven. Akad. Vied. 14. (Slovak. English summary), c. 208-216. ISSN: 0543-0046.

[^14]: ${ }^{11}$ Ján Černý (1964). "A remark on homogeneous experiments with finite automata". B: Mat.-Fyz. Casopis. Sloven. Akad. Vied. 14. (Slovak. English summary), c. 208-216. ISSN: 0543-0046.

[^15]: ${ }^{12}$ P. Frankl (1982). "An extremal problem for two families of sets'
 ${ }^{13} \mathrm{~J} .-\mathrm{E}$. Pin (1983). "On two combinatorial problems arising from automata theory". B: Combinatoria
 ${ }^{14}$ Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words'
 ${ }^{15} \mathrm{Y}$. Shitov (2019). "An improvement to a recent upper bound for synchronizing words of finite

[^16]: ${ }^{12}$ P. Frankl (1982). "An extremal problem for two families of sets". B: European J. Combin. 3.2, c. 125-127.
 ${ }^{13} \mathrm{~J} .-E$. Pin (1983). "On two combinatorial problems arising from automata theory". B: Combinatorial mathematics (Marseille-Luminy, 1981). T. 75. North-Holland Math. Stud. C. 535-548.
 ${ }^{14}$ Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words' т. 96. LIPIcs. Leibniz
 ${ }^{15} \mathrm{Y}$. Shitov (2019)
 ${ }^{15} \mathrm{Y}$. Shitov (2019). "An improvement to a recent upper bound for synchronizing words of finite

[^17]: ${ }^{12}$ P. Frankl (1982). "An extremal problem for two families of sets". B: European J. Combin. 3.2, c. 125-127.
 ${ }^{13} \mathrm{~J}$.-E. Pin (1983). "On two combinatorial problems arising from automata theory". B: Combinatorial mathematics (Marseille-Luminy, 1981). T. 75. North-Holland Math. Stud. C. 535-548.
 ${ }^{14}$ Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words". B: т. 96. LIPIcs. Leibniz Int. Proc. Inform. Art. No. 56, 13.
 ${ }^{15} \mathrm{Y}$. Shitov (2019). "An improvement to a recent upper bound for synchronizing words of finite

[^18]: ${ }^{12}$ P. Frankl (1982). "An extremal problem for two families of sets". B: European J. Combin. 3.2, c. 125-127.
 ${ }^{13} \mathrm{~J}$.-E. Pin (1983). "On two combinatorial problems arising from automata theory". B: Combinatorial mathematics (Marseille-Luminy, 1981). T. 75. North-Holland Math. Stud. C. 535-548.
 ${ }^{14}$ Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words". B:
 т. 96. LIPIcs. Leibniz Int. Proc. Inform. Art. No. 56, 13.
 ${ }^{15}$ Y. Shitov (2019). "An improvement to a recent upper bound for synchronizing words of finite automata". B: Journal of Automata, Languages and Combinatorics 24, c. 367-373.

[^19]: ${ }^{16}$ Vincent D. Blondel, Raphaël M. Jungers и Alex Olshevsky (2015). "On primitivity of sets of matrices". B: Automatica J. IFAC 61, c. 80-88.

[^20]: ${ }^{17}$ J. E. Cohen и P. H. Sellers (1982). "Sets of nonnegative matrices with positive inhomogeneous products". B: Linear Algebra and its Application 47, c. 185-192.

[^21]: ${ }^{17}$ J. E. Cohen и P. H. Sellers (1982). "Sets of nonnegative matrices with positive inhomogeneous products". B: Linear Algebra and its Application 47, c. 185-192.

[^22]: ${ }^{17}$ J. E. Cohen и P. H. Sellers (1982). "Sets of nonnegative matrices with positive inhomogeneous products". B: Linear Algebra and its Application 47, c. 185-192.

