# Automata with an almost constant rank property on words

### Yinfeng Zhu

Shanghai Jiao Tong University & Imperial College London

This is joint work with Yaokun Wu

Ural Seminar on Group Theory and Combinatorics

June 7, 2022

## Deterministic automata

### A (deterministic) automaton $\mathcal{A}$ is a 3-tuple ( $Q, \Sigma, \delta$ ), consisting of

- ▶ a set of states *Q*;
- > a set of input symbols  $\Sigma$ ;
- ► a transition function  $\delta : Q \times \Sigma \rightarrow Q$ .

## Deterministic automata

A (deterministic) automaton A is a 3-tuple ( $Q, \Sigma, \delta$ ), consisting of

a set of states Q;

a set of input symbols Σ;

► a transition function  $\delta : Q \times \Sigma \rightarrow Q$ .

Let  $\Sigma^*$  be the set of all finite words (sequences) over  $\Sigma$ . Use  $\varepsilon \in \Sigma^*$  to denote the word of length zero. The transition function naturally extends to a function  $Q \times \Sigma^* \to Q$  (also denoted by  $\delta$ ) such that for all  $\alpha = (\alpha_1, \ldots, \alpha_t) \in \Sigma^*$  and  $q \in Q$ ,

$$\delta(q,\alpha) = \begin{cases} q, & \text{if } \alpha = \varepsilon; \\ \delta(q,\alpha), & \text{if } t = 1; \\ \delta(\delta(q,(\alpha_1,\ldots,\alpha_{t-1})),\alpha_t), & \text{if } t > 1. \end{cases}$$

## Deterministic automata

A (deterministic) automaton A is a 3-tuple ( $Q, \Sigma, \delta$ ), consisting of

a set of states Q;

> a set of input symbols  $\Sigma$ ;

► a transition function  $\delta : Q \times \Sigma \rightarrow Q$ .

Let  $\Sigma^*$  be the set of all finite words (sequences) over  $\Sigma$ . Use  $\varepsilon \in \Sigma^*$  to denote the word of length zero. The transition function naturally extends to a function  $Q \times \Sigma^* \to Q$  (also denoted by  $\delta$ ) such that for all  $\alpha = (\alpha_1, \ldots, \alpha_t) \in \Sigma^*$  and  $q \in Q$ ,

$$\delta(q,\alpha) = \begin{cases} q, & \text{if } \alpha = \varepsilon; \\ \delta(q,\alpha), & \text{if } t = 1; \\ \delta(\delta(q,(\alpha_1,\ldots,\alpha_{t-1})),\alpha_t), & \text{if } t > 1. \end{cases}$$

To simplify notation we often write  $q.\alpha$  for  $\delta(q,\alpha)$  and  $P.\alpha$  for  $\{\delta(q,\alpha) : q \in P\}$ , where  $q \in Q$ ,  $P \subseteq Q$  and  $\alpha \in \Sigma^*$ .

## Automata and arc-colored digraphs

We illustrate an automaton as an arc-colored digraph with one arc of each color out of each vertex. Vertices are states, colors are transitions.

### Example

Let  $\mathcal{A}$  be the automaton  $(\{1,2,3,4\},\{a,b\},\delta)$  such that

| X   | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| x.a | 2 | 3 | 4 | 1 |
| x.b | 1 | 2 | 3 | 1 |

1.aaab = 1 = 2.aaab



## Synchronizing words

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. A word  $\alpha \in \Sigma^*$  is **synchronizing** if it sends any state of  $\mathcal{A}$  to the same state, that is  $q.\alpha = q'.\alpha$  for all  $q, q' \in Q$ . The minimum length of synchronizing words for  $\mathcal{A}$  is called the **synchronizing threshold** of  $\mathcal{A}$ . An automaton is **synchronizing** if it has a synchronizing word.

<sup>&</sup>lt;sup>1</sup> Ján Černý, Alica Pirická, and Blanka Rosenauerová (1971). "On directable automata". In: *Kybernetika (Prague)* 7, pp. 289–298. ISSN: 0023-5954.

## Synchronizing words

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. A word  $\alpha \in \Sigma^*$  is **synchronizing** if it sends any state of  $\mathcal{A}$  to the same state, that is  $q.\alpha = q'.\alpha$  for all  $q, q' \in Q$ . The minimum length of synchronizing words for  $\mathcal{A}$  is called the **synchronizing threshold** of  $\mathcal{A}$ . An automaton is **synchronizing** if it has a synchronizing word.

In 1964, Černý starts to study the synchronzing threshold of automata.

Define the **Černý function** C(n) as the maximum synchronizing threshold of all synchronizing automata with n states.

Conjecture (Černý, 1971<sup>1</sup>)  $C(n) = (n-1)^2$ .

<sup>&</sup>lt;sup>1</sup> Ján Černý, Alica Pirická, and Blanka Rosenauerová (1971). "On directable automata". In: *Kybernetika (Prague)* 7, pp. 289–298. ISSN: 0023-5954.

# Some progresses on Černý Conjecture

In 1964, Černý<sup>2</sup> found a family of automata  $\{C_n\}$  such that  $C_n$  is an *n*-state synchronizing automaton whose synchronizing threshold equals  $(n-1)^2$ . This shows that  $(n-1)^2 \leq C(n)$ .

<sup>&</sup>lt;sup>2</sup>Ján Černý (1964). "A remark on homogeneous experiments with finite automata". In: *Mat.-Fyz. Časopis. Sloven. Akad. Vied.* 14. (Slovak. English summary), pp. 208–216. ISSN: 0543-0046.

<sup>&</sup>lt;sup>3</sup>P. Frankl (1982). "An extremal problem for two families of sets". In: *European J. Combin.* 3.2, pp. 125–127. ISSN: 0195-6698. DOI: 10.1016/S0195-6698 (82)80025-5.

<sup>&</sup>lt;sup>4</sup> J.-E. Pin (1983). "On two combinatorial problems arising from automata theory". In: *Combinatorial mathematics (Marseille-Luminy, 1981)*. Vol. 75. North-Holland Math. Stud. North-Holland, Amsterdam, pp. 535–548.

<sup>&</sup>lt;sup>5</sup>Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words". In: *35th Symposium on Theoretical Aspects of Computer Science*. Vol. 96. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art. No. 56, 13. DOI: 10.4230/LIPIcs.STACS.2018.56.

<sup>&</sup>lt;sup>6</sup>Yaroslav Shitov (2019). "An Improvement to a Recent Upper Bound for Synchronizing Words of Finite Automata". In: Journal of Automata, Languages and Combinatorics 24.2-4, pp. 367-373. DOI: 10.25596/jalc-2019-367.

# Some progresses on Černý Conjecture

In 1964, Černý<sup>2</sup> found a family of automata  $\{C_n\}$  such that  $C_n$  is an *n*-state synchronizing automaton whose synchronizing threshold equals  $(n-1)^2$ . This shows that  $(n-1)^2 \leq C(n)$ .

There are some upper bounds of C(n) which approximately equals  $O(\frac{n^3}{6})$ .

- ▶ [Frankl<sup>3</sup>-Pin<sup>4</sup> 1982]  $C(n) \le \frac{n^3 n}{6} \le O(0.16667n^3)$
- ▶ [Szykuła<sup>5</sup> 2018]  $C(n) \le \frac{85059n^3 + 90024n^2 + 196504n 10648}{511104} \le O(0.16643n^3)$
- ▶ [Shitov<sup>6</sup> 2019]  $C(n) \le \left(\frac{7}{48} + \frac{15625}{798768}\right)n^3 + o(n^2) \le O(0.16540n^3)$

<sup>3</sup>P. Frankl (1982). "An extremal problem for two families of sets". In: *European J. Combin.* 3.2, pp. 125–127. ISSN: 0195-6698. DOI: 10.1016/S0195-6698(82)80025-5.

<sup>4</sup>J.-E. Pin (1983). "On two combinatorial problems arising from automata theory". In: *Combinatorial mathematics (Marseille-Luminy, 1981)*. Vol. 75. North-Holland Math. Stud. North-Holland, Amsterdam, pp. 535–548.

<sup>5</sup>Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words". In: *35th Symposium on Theoretical Aspects of Computer Science*. Vol. 96. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art. No. 56, 13. DOI: 10.4230/LIPIcs.STACS.2018.56.

<sup>6</sup>Yaroslav Shitov (2019). "An Improvement to a Recent Upper Bound for Synchronizing Words of Finite Automata". In: Journal of Automata, Languages and Combinatorics 24.2–4, pp. 367–373. DOI: 10.25596/jalc-2019-367.

<sup>&</sup>lt;sup>2</sup>Ján Černý (1964). "A remark on homogeneous experiments with finite automata". In: *Mat.-Fyz. Časopis. Sloven. Akad. Vied.* 14. (Slovak. English summary), pp. 208–216. ISSN: 0543-0046.

### Eventual ranges and rank

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. A subset  $P \subseteq Q$  is an **eventual range** of  $\mathcal{A}$  if

- there exists a word  $\alpha \in \Sigma^*$  such that  $P = Q.\alpha$ ;
- ▶ for all  $p, q \in P$  and  $\beta \in \Sigma^*$ , if  $p \neq q$  then  $p.\beta \neq q.\beta$ .

Use  $ev(\mathcal{A})$  to denote the set of eventual range of  $\mathcal{A}$ .

### Eventual ranges and rank

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. A subset  $P \subseteq Q$  is an **eventual range** of  $\mathcal{A}$  if

- there exists a word  $\alpha \in \Sigma^*$  such that  $P = Q.\alpha$ ;
- ▶ for all  $p, q \in P$  and  $\beta \in \Sigma^*$ , if  $p \neq q$  then  $p.\beta \neq q.\beta$ .

Use  $ev(\mathcal{A})$  to denote the set of eventual range of  $\mathcal{A}$ . An **eventual-range word** of  $\mathcal{A}$  is a word  $\alpha \in \Sigma^*$  such that  $Q.\alpha \in ev(\mathcal{A})$ . The minimum length of eventual-range words for  $\mathcal{A}$  is called the **eventual-range threshold** of  $\mathcal{A}$ .

## Eventual ranges and rank

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. A subset  $P \subseteq Q$  is an **eventual range** of  $\mathcal{A}$  if

- there exists a word  $\alpha \in \Sigma^*$  such that  $P = Q.\alpha$ ;
- ▶ for all  $p, q \in P$  and  $\beta \in \Sigma^*$ , if  $p \neq q$  then  $p.\beta \neq q.\beta$ .

Use  $ev(\mathcal{A})$  to denote the set of eventual range of  $\mathcal{A}$ . An **eventual-range word** of  $\mathcal{A}$  is a word  $\alpha \in \Sigma^*$  such that  $Q.\alpha \in ev(\mathcal{A})$ . The minimum length of eventual-range words for  $\mathcal{A}$  is called the **eventual-range threshold** of  $\mathcal{A}$ .

Assume that the state set of A is finite. Observe that the size of eventual ranges of A are equal. This size is called the **rank** of A. Define the function C(n, r) as the maximum eventual-range threshold of all *n*-state automata of rank *r*.

# Volkov's Deficiency Conjecture

Conjecture (Volkov<sup>7</sup> 2004) For  $n \ge r$ ,  $C(n, r) = (n - r)^2$ .

#### Remark

Since an automaton is synchronizing if and only if its rank equals 1, the above conjecture generalizes the Černý Conjecture.

<sup>&</sup>lt;sup>7</sup>S. W. Margolis, J.-E. Pin, and M. V. Volkov (2004). "Words guaranteeing minimum image". In: Internat. J. Found. Comput. Sci. 15.2, pp. 259–276. ISSN: 0129-0541. DOI: 10.1142/S0129054104002406.

## An analog problem of Volkov's Deficiency Conjecture

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. We say that  $\mathcal{A}$  has **Property S** if there exists an integer k such that every word over  $\Sigma$  of length  $\geq k$  is an **eventual-range word** of  $\mathcal{A}$ . Use  $\mathbb{S}$  to denote the family of automata with Property S.

If  $\mathcal{A} \in \mathbb{S}$ , the strongly eventual-range threshold of  $\mathcal{A}$ , denoted by sevt( $\mathcal{A}$ ), is defined as the minimum integer k such that  $Q.\alpha \in ev(\mathcal{A})$  for every word  $\alpha \in \Sigma^{\geq k}$ .

## An analog problem of Volkov's Deficiency Conjecture

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. We say that  $\mathcal{A}$  has **Property S** if there exists an integer k such that every word over  $\Sigma$  of length  $\geq k$  is an **eventual-range word** of  $\mathcal{A}$ . Use  $\mathbb{S}$  to denote the family of automata with Property S.

If  $\mathcal{A} \in \mathbb{S}$ , the strongly eventual-range threshold of  $\mathcal{A}$ , denoted by  $\operatorname{sevt}(\mathcal{A})$ , is defined as the minimum integer k such that  $Q.\alpha \in \operatorname{ev}(\mathcal{A})$  for every word  $\alpha \in \Sigma^{\geq k}$ .

Define the function D(n, r) to be the maximum strongly eventual-range threshold of all *n*-state automata of rank *r* in  $\mathbb{S}$ .

Conjecture (Wu-Z., 2022+) For  $n \ge r$ , D(n, r) = n - r. A lower bound of D(n, r)

The following example shows that  $D(n,r) \ge n-r$ .

Example



## A classification of $\ensuremath{\mathbb{S}}$

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. Let  $\mathcal{A}^{(2)}$  be the automaton  $(Q', \Sigma, \delta)$  such that  $\mathcal{A}' = \begin{pmatrix} Q \\ 1 \end{pmatrix} \cup \begin{pmatrix} Q \\ 2 \end{pmatrix};$  $\delta(P, a) = P.a = \{\delta(p, a) : p \in P\}$  for all  $P \in Q'$  and  $a \in \Sigma$ .

# A classification of $\ensuremath{\mathbb{S}}$

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. Let  $\mathcal{A}^{(2)}$  be the automaton  $(Q', \Sigma, \delta)$  such that  $\mathcal{Q}' = \begin{pmatrix} Q \\ 1 \end{pmatrix} \cup \begin{pmatrix} Q \\ 2 \end{pmatrix}$ ;

• 
$$\delta(P, a) = P \cdot a = \{\delta(p, a) : p \in P\}$$
 for all  $P \in Q'$  and  $a \in \Sigma$ .

A pair of states p, q in  $\mathcal{A}$  is **compressible** if there exists  $\alpha \in \Sigma^*$  such that  $p.\alpha = q.\alpha$ . Use  $com(\mathcal{A})$  to denote the set of compressible pairs.

#### Theorem (Wu-Z., 2022+)

Let G be the arc-colored digraph correponding to  $\mathcal{A}^{(2)}$ . Then  $\mathcal{A} \in \mathbb{S}$  if and only if the induced subdigraph  $G[\operatorname{com}(\mathcal{A})]$  of G on  $\operatorname{com}(\mathcal{A})$  is acyclic.



## Some remarks on the classification

Let  $\mathcal{A}$  be an automaton in  $\mathbb{S}$ .

► The acyclic property allows us to define a partial order  $\leq_{\mathcal{A}}$  on com( $\mathcal{A}$ ) as  $P_1 \leq P_2$  if there exists  $\alpha \in \Sigma^*$  such that  $P_1 = P_2.\alpha$ .

## Some remarks on the classification

Let  $\mathcal{A}$  be an automaton in  $\mathbb{S}$ .

- ► The acyclic property allows us to define a partial order  $\leq_{\mathcal{A}}$  on com( $\mathcal{A}$ ) as  $P_1 \leq P_2$  if there exists  $\alpha \in \Sigma^*$  such that  $P_1 = P_2 \cdot \alpha$ .
- The maximum size of a chain (a totally ordered subset) in the poset (com(A), ≤<sub>A</sub>) equals the strongly eventual-range threshold of A.

## Some remarks on the classification

Let  $\mathcal{A}$  be an automaton in  $\mathbb{S}$ .

- ► The acyclic property allows us to define a partial order  $\leq_{\mathcal{A}}$  on com( $\mathcal{A}$ ) as  $P_1 \leq P_2$  if there exists  $\alpha \in \Sigma^*$  such that  $P_1 = P_2 \cdot \alpha$ .
- The maximum size of a chain (a totally ordered subset) in the poset (com(A), ≤<sub>A</sub>) equals the strongly eventual-range threshold of A.

For 
$$n \ge r$$
,  $D(n, r) \le {n \choose 2} - {r \choose 2}$ .



## Congruences and quotient automata

An equivalence relation  $\rho$  on the state set Q of an automata  $\mathcal{A} = (Q, \Sigma, \delta)$  is called a **congruence** if  $(p, q) \in \rho$  implies  $(p.a, q.a) \in \rho$  for all  $p, q \in Q$  and  $a \in \Sigma$ .

## Congruences and quotient automata

An equivalence relation  $\rho$  on the state set Q of an automata  $\mathcal{A} = (Q, \Sigma, \delta)$  is called a **congruence** if  $(p, q) \in \rho$  implies  $(p.a, q.a) \in \rho$  for all  $p, q \in Q$  and  $a \in \Sigma$ . For a congruence  $\rho$  of  $\mathcal{A}$ , the **quotient automaton**  $\mathcal{A}/\rho$  is the automaton  $(Q', \Sigma, \delta_{\rho})$  where

• 
$$Q' = \{[q]_{\rho} : q \in Q\};$$
  
•  $\delta_{\rho}([q]_{\rho}, a) = [\delta(q, a)]_{\rho}.$ 

Theorem (Bleak-Cameron-Maissel-Navas-Olukoya<sup>8</sup> 2019 ) For  $n \ge 1$ , D(n, 1) = n - 1.

Proof.

We apply induction on n. For n = 1, it clearly holds D(1, 1) = 0.

<sup>&</sup>lt;sup>8</sup>Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the Higman groups  $G_{n,r}$ . arXiv: 1605.09302 [math.GR].

# Theorem (Bleak-Cameron-Maissel-Navas-Olukoya<sup>8</sup> 2019 ) For $n \ge 1$ , D(n, 1) = n - 1.

### Proof.

We apply induction on *n*. For n = 1, it clearly holds D(1, 1) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state automaton of rank 1. Take a minimal element  $\{p, q\}$  in the poset  $(\operatorname{com}(\mathcal{A}), \preceq_{\mathcal{A}})$ .

<sup>&</sup>lt;sup>8</sup>Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the Higman groups  $G_{n,r}$ . arXiv: 1605.09302 [math.GR].

# Theorem (Bleak-Cameron-Maissel-Navas-Olukoya<sup>8</sup> 2019 ) For $n \ge 1$ , D(n, 1) = n - 1.

#### Proof.

We apply induction on *n*. For n = 1, it clearly holds D(1, 1) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state automaton of rank 1. Take a minimal element  $\{p, q\}$  in the poset  $(\operatorname{com}(\mathcal{A}), \preceq_{\mathcal{A}})$ . Since  $\operatorname{rank}(\mathcal{A}) = 1$ , we have  $\operatorname{com}(\mathcal{A}) = \binom{Q}{2}$ . Then p.a = q.a for all  $a \in \Sigma$ .

<sup>&</sup>lt;sup>8</sup>Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the Higman groups  $G_{n,r}$ . arXiv: 1605.09302 [math.GR].

# Theorem (Bleak-Cameron-Maissel-Navas-Olukoya<sup>8</sup> 2019 ) For $n \ge 1$ , D(n, 1) = n - 1.

#### Proof.

We apply induction on *n*. For n = 1, it clearly holds D(1, 1) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state automaton of rank 1. Take a minimal element  $\{p, q\}$  in the poset  $(\operatorname{com}(\mathcal{A}), \preceq_{\mathcal{A}})$ . Since  $\operatorname{rank}(\mathcal{A}) = 1$ , we have  $\operatorname{com}(\mathcal{A}) = \binom{Q}{2}$ . Then p.a = q.a for all  $a \in \Sigma$ . Define  $\rho = \{(x, x) : x \in Q\} \cup \{(p, q), (q, p)\}$ . Observe that  $\rho$  is a congruence of  $\mathcal{A}$ .

<sup>&</sup>lt;sup>8</sup>Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the Higman groups  $G_{n,r}$ . arXiv: 1605.09302 [math.GR].

# Theorem (Bleak-Cameron-Maissel-Navas-Olukoya<sup>8</sup> 2019 ) For $n \ge 1$ , D(n, 1) = n - 1.

#### Proof.

We apply induction on *n*. For n = 1, it clearly holds D(1, 1) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state automaton of rank 1. Take a minimal element  $\{p, q\}$  in the poset  $(\operatorname{com}(\mathcal{A}), \preceq_{\mathcal{A}})$ . Since  $\operatorname{rank}(\mathcal{A}) = 1$ , we have  $\operatorname{com}(\mathcal{A}) = \binom{Q}{2}$ . Then p.a = q.a for all  $a \in \Sigma$ . Define  $\rho = \{(x, x) : x \in Q\} \cup \{(p, q), (q, p)\}$ . Observe that  $\rho$  is a congruence of  $\mathcal{A}$ . One can check that

$$\blacktriangleright \mathcal{A} / \rho \in \mathbb{S};$$

- $\operatorname{rank}(\mathcal{A}/\rho) = 1;$
- ► sevt( $\mathcal{A}$ ) ≤ sevt( $\mathcal{A}/\rho$ ) + 1.

By induction assumption,  $\operatorname{sevt}(\mathcal{A}) \leq \operatorname{sevt}(\mathcal{A}/\rho) + 1 \leq n - 2 + 1 = n - 1$ . Hence D(n, 1) = n - 1.

<sup>&</sup>lt;sup>8</sup>Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the Higman groups  $G_{n,r}$ . arXiv: 1605.09302 [math.GR].

## Eventual range automata

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. Let  $\mathcal{EV}(\mathcal{A}) = (ev(\mathcal{A}), \Sigma, \delta)$  be the **eventual** range automaton of  $\mathcal{A}$  such that

•  $\delta(P, a) = P.a = \{\delta(p, a) : p \in P\}$  for all  $P \in ev(\mathcal{A})$  and  $a \in \Sigma$ .

## Eventual range automata

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. Let  $\mathcal{EV}(\mathcal{A}) = (ev(\mathcal{A}), \Sigma, \delta)$  be the **eventual** range automaton of  $\mathcal{A}$  such that

•  $\delta(P, a) = P.a = \{\delta(p, a) : p \in P\}$  for all  $P \in ev(\mathcal{A})$  and  $a \in \Sigma$ .

An automaton is **irreducible** if for every two states p, q, there exists a word  $\alpha$  such that  $p.\alpha = q$ .

## Eventual range automata

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton. Let  $\mathcal{EV}(\mathcal{A}) = (ev(\mathcal{A}), \Sigma, \delta)$  be the **eventual** range automaton of  $\mathcal{A}$  such that

► 
$$\delta(P, a) = P.a = \{\delta(p, a) : p \in P\}$$
 for all  $P \in ev(\mathcal{A})$  and  $a \in \Sigma$ .

An automaton is **irreducible** if for every two states p, q, there exists a word  $\alpha$  such that  $p.\alpha = q$ .

#### Lemma

Let  $\mathcal{A}$  be an automaton in  $\mathbb{S}$ . Then  $\mathcal{EV}(\mathcal{A})$  is an automaton of rank 1 in  $\mathbb{S}$ . Moreover, if  $\mathcal{A}$  is irreducible, then  $sevt(\mathcal{A}) = sevt(\mathcal{EV}(\mathcal{A}))$ .

```
Theorem (Wu-Z., 2022+)
For n \ge 2, D(n, 2) = n - 2.
```

#### Proof.

We apply induction on *n*. For n = 2, it clearly holds D(2, 2) = 0.

### Theorem (Wu-Z., 2022+) For n > 2, D(n, 2) = n - 2.

#### Proof.

We apply induction on *n*. For n = 2, it clearly holds D(2, 2) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state irreducible automaton of rank 2. We shall show  $\operatorname{sevt}(\mathcal{A}) \leq n-2$  (the proof of the non-irreducible case is similar, but involves more technical details.)

### Theorem (Wu-Z., 2022+) For n > 2, D(n, 2) = n - 2.

#### Proof.

We apply induction on *n*. For n = 2, it clearly holds D(2,2) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state irreducible automaton of rank 2. We shall show  $\operatorname{sevt}(\mathcal{A}) \leq n - 2$  (the proof of the non-irreducible case is similar, but involves more technical details.)

CASE 1. All eventual ranges of  $\mathcal{A}$  are pairwise disjoint.

We have  $\operatorname{sevt}(\mathcal{A}) = \operatorname{sevt}(\mathcal{EV}(\mathcal{A})) \le |\operatorname{ev}(\mathcal{A})| - 1 \le \frac{n}{2} - 1 \le n - 2.$ 

#### CASE 2. There exist $P_1, P_2 \in ev(\mathcal{A})$ such that $|P_1 \cap P_2| = 1$ .

Take a minimal element  $\{T_1, T_2\}$  in the poset  $(com(\mathcal{EV}(\mathcal{A})), \preceq_{\mathcal{EV}(\mathcal{A})})$  such that  $\{T_1, T_2\} \preceq_{\mathcal{EV}(\mathcal{A})} \{P_1, P_2\}.$ 

#### CASE 2. There exist $P_1, P_2 \in ev(\mathcal{A})$ such that $|P_1 \cap P_2| = 1$ .

Take a minimal element  $\{T_1, T_2\}$  in the poset  $(com(\mathcal{EV}(\mathcal{A})), \preceq_{\mathcal{EV}(\mathcal{A})})$  such that  $\{T_1, T_2\} \preceq_{\mathcal{EV}(\mathcal{A})} \{P_1, P_2\}$ . Observe that  $|T_1 \cap T_2| = 1$ . Assume that  $T_1 = \{p, x\}$  and  $T_2 = \{q, x\}$  satisfying  $p \neq q$ .

#### CASE 2. There exist $P_1, P_2 \in ev(\mathcal{A})$ such that $|P_1 \cap P_2| = 1$ .

Take a minimal element  $\{T_1, T_2\}$  in the poset  $(com(\mathcal{EV}(\mathcal{A})), \preceq_{\mathcal{EV}(\mathcal{A})})$  such that  $\{T_1, T_2\} \preceq_{\mathcal{EV}(\mathcal{A})} \{P_1, P_2\}$ . Observe that  $|T_1 \cap T_2| = 1$ . Assume that  $T_1 = \{p, x\}$  and  $T_2 = \{q, x\}$  satisfying  $p \neq q$ . Since  $rank(\mathcal{EV}(\mathcal{A})) = 1$ , it holds that  $T_{1.a} = T_{2.a}$  for all  $a \in \Sigma$ . Therefore p.a = q.a for all  $a \in \Sigma$ .

#### CASE 2. There exist $P_1, P_2 \in ev(\mathcal{A})$ such that $|P_1 \cap P_2| = 1$ .

Take a minimal element  $\{T_1, T_2\}$  in the poset  $(com(\mathcal{EV}(\mathcal{A})), \preceq_{\mathcal{EV}(\mathcal{A})})$  such that  $\{T_1, T_2\} \preceq_{\mathcal{EV}(\mathcal{A})} \{P_1, P_2\}$ . Observe that  $|T_1 \cap T_2| = 1$ . Assume that  $T_1 = \{p, x\}$  and  $T_2 = \{q, x\}$  satisfying  $p \neq q$ . Since  $rank(\mathcal{EV}(\mathcal{A})) = 1$ , it holds that  $T_1.a = T_2.a$  for all  $a \in \Sigma$ . Therefore p.a = q.a for all  $a \in \Sigma$ . Define  $\rho = \{(x, x) : x \in Q\} \cup \{(p, q), (q, p)\}$ . Observe that  $\rho$  is a congruence of  $\mathcal{A}$ . One can check that

$$\blacktriangleright \mathcal{A} / \rho \in \mathbb{S};$$

•  $\mathcal{A} / \rho$  is irreducible;

•  $\operatorname{rank}(\mathcal{A}/\rho) = 2;$ 

► sevt( $\mathcal{A}$ ) ≤ sevt( $\mathcal{A}/\rho$ ) + 1.

By induction assumption,  $\operatorname{sevt}(\mathcal{A}) \leq \operatorname{sevt}(\mathcal{A}/\rho) + 1 \leq n-3+1 = n-2$ .

# Theorem (Wu-Z., 2022+) For $n \ge 3$ , $D(n,3) = o(n^2)$ .

### Proof.

We apply induction on *n*. For n = 3, it clearly holds D(3,3) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state irreducible automaton of rank 3. (the proof of the non-irreducible case is similar, but involves more technical details.)

# Theorem (Wu-Z., 2022+) For $n \ge 3$ , $D(n,3) = o(n^2)$ .

#### Proof.

We apply induction on *n*. For n = 3, it clearly holds D(3,3) = 0. Let  $\mathcal{A} = (Q, \Sigma, \delta) \in \mathbb{S}$  be an *n*-state irreducible automaton of rank 3. (the proof of the non-irreducible case is similar, but involves more technical details.)

CASE 1. There exists  $P_1, P_2, P_3 \in ev(\mathcal{A})$  such that one of the following conditions holds:

- ▶  $|P_1 \cap P_2| = 2;$
- ▶  $|P_1 \cap P_2| = |P_2 \cap P_3| = |P_3 \cap P_1| = 1$  and  $P_1 \cap P_2 \cap P_3 = \emptyset$ .

By using some combinatorial arguments, we can show that there exists a pair of states  $p, q \in Q$  such that p.a = q.a for all  $a \in \Sigma$ . Using the similar arguments in the previous proofs, we can obtain that  $sevt(A) \le o(n^2)$ .

## Triangle Removal Lemma

Define f(n) as the maximum number of hyperedges in a 3-uniform hypergraph which does not have a sub-hypergraph isomorphic to  $F_1$  or  $F_2$ .





Theorem  $f(n) = o(n^2)$ .

# Triangle Removal Lemma

Define f(n) as the maximum number of hyperedges in a 3-uniform hypergraph which does not have a sub-hypergraph isomorphic to  $F_1$  or  $F_2$ .





#### Theorem

$$f(n)=o(n^2).$$

This theorem is a corollary of the Triangle Removal Lemma.

## Theorem (Triangle Removal Lemma)

Every graph on n vertices with  $o(n^3)$  triangles (the complete graph on three vertices) can be made triangle-free by removing at most  $o(n^2)$  edges.



CASE 2. For all distinct  $P_1, P_2, P_3 \in ev(\mathcal{A})$  such that none of the following conditions holds

- ▶  $|P_1 \cap P_2| = 2;$
- ▶  $|P_1 \cap P_2| = |P_2 \cap P_3| = |P_3 \cap P_1| = 1$  and  $P_1 \cap P_2 \cap P_3 = \emptyset$ .

Consider the 3-uniform hypergraph H whose vertex set is Q and hyperedge set is  $ev(\mathcal{A})$ . Clearly, H has no subgraph isomorphic to  $F_1$  or  $F_2$ . Then  $sevt(\mathcal{A}) \leq sevt(\mathcal{EV}(\mathcal{A})) \leq |ev(\mathcal{A})| - 1 = (the number of hyperedges in <math>H) - 1 = o(n^2)$ .

We conclude our knowledge of D(n, r) as the following: for  $n \ge r$ ,

$$D(n,r) \begin{cases} = n-r & \text{if } r \in \{1,2,n-2,n-1,n\}; \\ = o(n^2) & \text{if } r = 3; \\ \leq \binom{n}{2} - \binom{r}{2} & \text{if } 4 \leq r \leq n-3. \end{cases}$$

## A generalization

Let  $\mathcal{A} = (Q, \Sigma, \delta)$  be an automaton such that Q is an *n*-dimensional vector space over a field  $\mathbb{F}$  and  $\delta(\cdot, a)$  is an affine linear transformation on Q for all  $a \in \Sigma$ . Observe that every eventual range of  $\mathcal{A}$  is an affine subspace of Q and they have the same dimension, denoted by r.

#### Theorem (Wu-Z. 2022+)

If  $\mathcal{A} \in \mathbb{S}$  and  $r \in \{0,1\}$ , then  $\operatorname{sevt}(\mathcal{A}) \leq n - r$ .

#### Remark

The above theorem is a generalization of the results D(n, 1) = n - 1 and D(n, 2) = n - 2.



Thank you!