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Deterministic automata

A (deterministic) automaton A is a 3-tuple (Q,Σ, δ), consisting of

I a set of states Q;

I a set of input symbols Σ;

I a transition function δ : Q × Σ→ Q.

Let Σ∗ be the set of all finite words (sequences) over Σ. Use ε ∈ Σ∗ to denote the
word of length zero. The transition function naturally extends to a function
Q × Σ∗ → Q (also denoted by δ) such that for all α = (α1, . . . , αt) ∈ Σ∗ and q ∈ Q,

δ(q, α) =


q, if α = ε;

δ(q, α), if t = 1;

δ(δ(q, (α1, . . . , αt−1)), αt), if t > 1.

To simplify notation we often write q.α for δ(q, α) and P.α for {δ(q, α) : q ∈ P},
where q ∈ Q, P ⊆ Q and α ∈ Σ∗.
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Automata and arc-colored digraphs

We illustrate an automaton as an arc-colored digraph with one arc of each color out of
each vertex. Vertices are states, colors are transitions.

Example

Let A be the automaton
({1, 2, 3, 4}, {a, b}, δ) such that

x 1 2 3 4

x .a 2 3 4 1
x .b 1 2 3 1

1.aaab = 1 = 2.aaab
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Synchronizing words

Let A = (Q,Σ, δ) be an automaton. A word α ∈ Σ∗ is synchronizing if it sends any
state of A to the same state, that is q.α = q′.α for all q, q′ ∈ Q. The minimum length
of synchronizing words for A is called the synchronizing threshold of A.
An automaton is synchronizing if it has a synchronzing word.

In 1964, Černý starts to study the synchronzing threshold of automata.

Define the Černý function C (n) as the maximum synchronizing threshold of all
synchronizing automata with n states.

Conjecture (Černý, 19711)

C (n) = (n − 1)2.

1Ján Černý, Alica Pirická, and Blanka Rosenauerová (1971). “On directable automata”. In: Kybernetika (Prague) 7, pp. 289–298. issn:
0023-5954.
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Some progresses on Černý Conjecture

In 1964, Černý2 found a family of automata {Cn} such that Cn is an n-state
synchronizing automaton whose synchronizing threshold equals (n − 1)2. This shows
that (n − 1)2 ≤ C (n).

There are some upper bounds of C (n) which approximately equals O(n
3

6 ).

I [Frankl3-Pin4 1982] C (n) ≤ n3−n
6 ≤ O(0.16667n3)

I [Szyku la5 2018] C (n) ≤ 85059n3+90024n2+196504n−10648
511104 ≤ O(0.16643n3)

I [Shitov6 2019] C (n) ≤
(

7
48 + 15625

798768

)
n3 + o(n2) ≤ O(0.16540n3)

2Ján Černý (1964). “A remark on homogeneous experiments with finite automata”. In: Mat.-Fyz. Časopis. Sloven. Akad. Vied. 14. (Slovak.
English summary), pp. 208–216. issn: 0543-0046.

3P. Frankl (1982). “An extremal problem for two families of sets”. In: European J. Combin. 3.2, pp. 125–127. issn: 0195-6698. doi:
10.1016/S0195-6698(82)80025-5.

4J.-E. Pin (1983). “On two combinatorial problems arising from automata theory”. In: Combinatorial mathematics (Marseille-Luminy, 1981).
Vol. 75. North-Holland Math. Stud. North-Holland, Amsterdam, pp. 535–548.

5Marek Szyku la (2018). “Improving the upper bound and the length of the shortest reset words”. In: 35th Symposium on Theoretical Aspects of
Computer Science. Vol. 96. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art. No. 56, 13. doi:
10.4230/LIPIcs.STACS.2018.56.

6Yaroslav Shitov (2019). “An Improvement to a Recent Upper Bound for Synchronizing Words of Finite Automata”. In: Journal of Automata,
Languages and Combinatorics 24.2–4, pp. 367–373. doi: 10.25596/jalc-2019-367.

https://doi.org/10.1016/S0195-6698(82)80025-5
https://doi.org/10.4230/LIPIcs.STACS.2018.56
https://doi.org/10.25596/jalc-2019-367
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In 1964, Černý2 found a family of automata {Cn} such that Cn is an n-state
synchronizing automaton whose synchronizing threshold equals (n − 1)2. This shows
that (n − 1)2 ≤ C (n).

There are some upper bounds of C (n) which approximately equals O(n
3

6 ).

I [Frankl3-Pin4 1982] C (n) ≤ n3−n
6 ≤ O(0.16667n3)

I [Szyku la5 2018] C (n) ≤ 85059n3+90024n2+196504n−10648
511104 ≤ O(0.16643n3)

I [Shitov6 2019] C (n) ≤
(

7
48 + 15625

798768

)
n3 + o(n2) ≤ O(0.16540n3)
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Eventual ranges and rank

Let A = (Q,Σ, δ) be an automaton. A subset P ⊆ Q is an eventual range of A if

I there exists a word α ∈ Σ∗ such that P = Q.α;

I for all p, q ∈ P and β ∈ Σ∗, if p 6= q then p.β 6= q.β.

Use ev(A) to denote the set of eventual range of A.

An eventual-range word of A is
a word α ∈ Σ∗ such that Q.α ∈ ev(A). The minimum length of eventual-range words
for A is called the eventual-range threshold of A.

Assume that the state set of A is finite. Observe that the size of eventual ranges of A
are equal. This size is called the rank of A. Define the function C (n, r) as the
maximum eventual-range threshold of all n-state automata of rank r .
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Volkov’s Deficiency Conjecture

Conjecture (Volkov7 2004)

For n ≥ r , C (n, r) = (n − r)2.

Remark
Since an automaton is synchronizing if and only if its rank equals 1, the above
conjecture generalizes the Černý Conjecture.

7S. W. Margolis, J.-E. Pin, and M. V. Volkov (2004). “Words guaranteeing minimum image”. In: Internat. J. Found. Comput. Sci. 15.2,
pp. 259–276. issn: 0129-0541. doi: 10.1142/S0129054104002406.

https://doi.org/10.1142/S0129054104002406


An analog problem of Volkov’s Deficiency Conjecture

Let A = (Q,Σ, δ) be an automaton. We say that A has Property S if there exists an
integer k such that every word over Σ of length ≥ k is an eventual-range word of A.
Use S to denote the family of automata with Property S.
If A ∈ S, the strongly eventual-range threshold of A, denoted by sevt(A), is
defined as the minimum integer k such that Q.α ∈ ev(A) for every word α ∈ Σ≥k .

Define the function D(n, r) to be the maximum strongly eventual-range threshold of
all n-state automata of rank r in S.

Conjecture (Wu-Z., 2022+)

For n ≥ r , D(n, r) = n − r .
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A lower bound of D(n, r)

The following example shows that D(n, r) ≥ n − r .

Example

· · · · · ·a a a

a a a

r

n



A classification of S
Let A = (Q,Σ, δ) be an automaton. Let A(2) be the automaton (Q ′,Σ, δ) such that
I Q ′ =

(Q
1

)
∪
(Q

2

)
;

I δ(P, a) = P.a = {δ(p, a) : p ∈ P} for all P ∈ Q ′ and a ∈ Σ.

A pair of states p, q in A is compressible if there exists α ∈ Σ∗ such that p.α = q.α.
Use com(A) to denote the set of compressible pairs.

Theorem (Wu-Z., 2022+)

Let G be the arc-colored digraph correponding to A(2). Then A ∈ S if and only if the
induced subdigraph G [com(A)] of G on com(A) is acyclic.

Compressible Pairs Incompressible Pairs

Singleton Setsacyclic
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Some remarks on the classification
Let A be an automaton in S.

I The acyclic property allows us to define a partial order �A on com(A) as P1 � P2

if there exists α ∈ Σ∗ such that P1 = P2.α.

I The maximum size of a chain (a totally ordered subset) in the poset
(com(A),�A) equals the strongly eventual-range threshold of A.

I For n ≥ r , D(n, r) ≤
(n

2

)
−
(r

2

)
.

Compressible Pairs Incompressible Pairs

Singleton Sets

at most
(n

2

)
−
(r

2

)
vertices at least

(r
2

)
vertices
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Congruences and quotient automata

An equivalence relation ρ on the state set Q of an automata A = (Q,Σ, δ) is called a
congruence if (p, q) ∈ ρ implies (p.a, q.a) ∈ ρ for all p, q ∈ Q and a ∈ Σ.

For a congruence ρ of A, the quotient automaton A /ρ is the automaton (Q ′,Σ, δρ)
where

I Q ′ = {[q]ρ : q ∈ Q};
I δρ([q]ρ, a) = [δ(q, a)]ρ.
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Rank 1

Theorem (Bleak-Cameron-Maissel-Navas-Olukoya8 2019 )

For n ≥ 1, D(n, 1) = n − 1.

Proof.
We apply induction on n. For n = 1, it clearly holds D(1, 1) = 0.

Let A = (Q,Σ, δ) ∈ S be an n-state automaton of rank 1. Take a minimal element
{p, q} in the poset (com(A),�A). Since rank(A) = 1, we have com(A) =

(Q
2

)
. Then

p.a = q.a for all a ∈ Σ. Define ρ = {(x , x) : x ∈ Q} ∪ {(p, q), (q, p)}. Observe that ρ
is a congruence of A. One can check that

I A /ρ ∈ S;

I rank(A /ρ) = 1;

I sevt(A) ≤ sevt(A /ρ) + 1.

By induction assumption, sevt(A) ≤ sevt(A /ρ) + 1 ≤ n − 2 + 1 = n − 1. Hence
D(n, 1) = n − 1.

8Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the
Higman groups Gn,r . arXiv: 1605.09302 [math.GR].

https://arxiv.org/abs/1605.09302
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Eventual range automata

Let A = (Q,Σ, δ) be an automaton. Let EV(A) = (ev(A),Σ, δ) be the eventual
range automaton of A such that

I δ(P, a) = P.a = {δ(p, a) : p ∈ P} for all P ∈ ev(A) and a ∈ Σ.

An automaton is irreducible if for every two states p, q, there exists a word α such
that p.α = q.

Lemma
Let A be an automaton in S. Then EV(A) is an automaton of rank 1 in S. Moreover,
if A is irreducible, then sevt(A) = sevt(EV(A)).
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Rank 2

Theorem (Wu-Z., 2022+)

For n ≥ 2, D(n, 2) = n − 2.

Proof.
We apply induction on n. For n = 2, it clearly holds D(2, 2) = 0.

Let A = (Q,Σ, δ) ∈ S be an n-state irreducible automaton of rank 2. We shall show
sevt(A) ≤ n − 2 (the proof of the non-irreducible case is similar, but involves more
technical details.)

CASE 1. All eventual ranges of A are pairwise disjoint.

We have sevt(A) = sevt(EV(A)) ≤ | ev(A)| − 1 ≤ n
2 − 1 ≤ n − 2.
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Rank 2, Cont’d

CASE 2. There exist P1,P2 ∈ ev(A) such that |P1 ∩ P2| = 1.

Take a minimal element {T1,T2} in the poset (com(EV(A)),�EV(A)) such that
{T1,T2} �EV(A) {P1,P2}.

Observe that |T1 ∩ T2| = 1. Assume that T1 = {p, x} and
T2 = {q, x} satisfying p 6= q. Since rank(EV(A)) = 1, it holds that T1.a = T2.a for
all a ∈ Σ. Therefore p.a = q.a for all a ∈ Σ.
Define ρ = {(x , x) : x ∈ Q} ∪ {(p, q), (q, p)}. Observe that ρ is a congruence of A.
One can check that

I A /ρ ∈ S;

I A /ρ is irreducible;

I rank(A /ρ) = 2;

I sevt(A) ≤ sevt(A /ρ) + 1.

By induction assumption, sevt(A) ≤ sevt(A /ρ) + 1 ≤ n − 3 + 1 = n − 2.
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Rank 3

Theorem (Wu-Z., 2022+)

For n ≥ 3, D(n, 3) = o(n2).

Proof.
We apply induction on n. For n = 3, it clearly holds D(3, 3) = 0.
Let A = (Q,Σ, δ) ∈ S be an n-state irreducible automaton of rank 3. (the proof of the
non-irreducible case is similar, but involves more technical details.)

CASE 1. There exists P1,P2,P3 ∈ ev(A) such that one of the following conditions
holds:

I |P1 ∩ P2| = 2;

I |P1 ∩ P2| = |P2 ∩ P3| = |P3 ∩ P1| = 1 and P1 ∩ P2 ∩ P3 = ∅.

By using some combinatorial arguments, we can show that there exists a pair of states
p, q ∈ Q such that p.a = q.a for all a ∈ Σ. Using the similar arguments in the previous
proofs, we can obtain that sevt(A) ≤ o(n2).
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Triangle Removal Lemma

Define f (n) as the maximum number of hyperedges in a 3-uniform hypergraph which
does not have a sub-hypergraph isomorphic to F1 or F2.

F1 : F2 :

Theorem
f (n) = o(n2).

This theorem is a corollary of the Triangle Removal Lemma.

Theorem (Triangle Removal Lemma)

Every graph on n vertices with o(n3) triangles (the complete graph on three vertices)
can be made triangle-free by removing at most o(n2) edges.
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Rank 3, Cont’d

F1 : F2 :

CASE 2. For all distinct P1,P2,P3 ∈ ev(A) such that none of the following conditions
holds

I |P1 ∩ P2| = 2;

I |P1 ∩ P2| = |P2 ∩ P3| = |P3 ∩ P1| = 1 and P1 ∩ P2 ∩ P3 = ∅.

Consider the 3-uniform hypergraph H whose vertex set is Q and hyperedge set is
ev(A). Clearly, H has no subgraph isomorphic to F1 or F2. Then sevt(A) ≤
sevt(EV(A)) ≤ | ev(A)| − 1 = (the number of hyperedges in H)− 1 = o(n2).



D(n, r)

We conclude our knowledge of D(n, r) as the following: for n ≥ r ,

D(n, r)


= n − r if r ∈ {1, 2, n − 2, n − 1, n};
= o(n2) if r = 3;

≤
(n

2

)
−
(r

2

)
if 4 ≤ r ≤ n − 3.



A generalization

Let A = (Q,Σ, δ) be an automaton such that Q is an n-dimensional vector space over
a field F and δ(·, a) is an affine linear transformation on Q for all a ∈ Σ. Observe that
every eventual range of A is an affine subspace of Q and they have the same
dimension, denoted by r .

Theorem (Wu-Z. 2022+)

If A ∈ S and r ∈ {0, 1}, then sevt(A) ≤ n − r .

Remark
The above theorem is a generalization of the results D(n, 1) = n − 1 and
D(n, 2) = n − 2.



Thank you!


