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> a set of states Q;
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» a transition function § : Q@ X ¥ — Q.



Deterministic automata

A (deterministic) automaton A is a 3-tuple (Q, X, d), consisting of
> a set of states Q;
> a set of input symbols ¥;
» a transition function § : Q@ X ¥ — Q.

Let £* be the set of all finite words (sequences) over ¥. Use ¢ € £* to denote the
word of length zero. The transition function naturally extends to a function
Q x X* — Q (also denoted by §) such that for all @ = (a1,...,a:) € £* and g € Q,

q, if « =¢;
5(q7 Oé) = 5(q,0¢), If t= ]_,
6(6(q, (a1, ..., 1)), ), if t>1.



Deterministic automata

A (deterministic) automaton A is a 3-tuple (Q, X, d), consisting of
> a set of states Q;
> a set of input symbols ¥;
» a transition function § : Q@ X ¥ — Q.

Let £* be the set of all finite words (sequences) over ¥. Use ¢ € £* to denote the
word of length zero. The transition function naturally extends to a function
Q x X* — Q (also denoted by §) such that for all @ = (a1,...,a:) € £* and g € Q,

q, if « =¢;
5(q7 Oé) = 5(q,0¢), If t= ]_,
6(6(q, (a1, ..., 1)), ), if t>1.

To simplify notation we often write g.« for §(q, &) and P.« for {d(q,a) : g € P},
where g€ Q, PC @ and o € ©*.



Automata and arc-colored digraphs

We illustrate an automaton as an arc-colored digraph with one arc of each color out of
each vertex. Vertices are states, colors are transitions.

Example

Let A be the automaton
({1,2,3,4},{a, b}, d) such that
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Synchronizing words

Let A =(Q,X,0) be an automaton. A word o € L* is synchronizing if it sends any
state of A to the same state, that is g.a = ¢’.« for all g,¢’ € Q. The minimum length
of synchronizing words for A is called the synchronizing threshold of A.

An automaton is synchronizing if it has a synchronzing word.

1)an Cerny, Alica Piricka, and Blanka Rosenauerova (1971). “On directable automata”. In: Kybernetika (Prague) 7, pp. 289-298. 1SN

0023-5954.



Synchronizing words

Let A =(Q,X,0) be an automaton. A word o € L* is synchronizing if it sends any
state of A to the same state, that is g.a = ¢’.« for all g,¢’ € Q. The minimum length
of synchronizing words for A is called the synchronizing threshold of A.

An automaton is synchronizing if it has a synchronzing word.

In 1964, Cerny starts to study the synchronzing threshold of automata.

Define the Cerny function C(n) as the maximum synchronizing threshold of all
synchronizing automata with n states.

Conjecture (Cerny, 1971%)

C(n) = (n—1)2

1)an Cerny, Alica Piricka, and Blanka Rosenauerova (1971). “On directable automata”. In: Kybernetika (Prague) 7, pp. 289-298. 1SN
0023-5954.



Some progresses on Cerny Conjecture

In 1964, Cerny? found a family of automata {C,} such that C, is an n-state
synchronizing automaton whose synchronizing threshold equals (n — 1)2. This shows
that (n —1)2 < C(n).

2Jén Cerny (1964). “A remark on homogeneous experiments with finite automata”. In: Mat.-Fyz. Casopis. Sloven. Akad. Vied. 14. (Slovak.
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10.4230/LIPIcs.STACS.2018.56.
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In 1964, Cerny? found a family of automata {C,} such that C, is an n-state
synchronizing automaton whose synchronizing threshold equals (n — 1)?. This shows
that (n —1)2 < C(n).

There are some upper bounds of C(n) which approximately equals O("—s).
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Let A =(Q,X,0) be an automaton. A subset P C Q is an eventual range of A if
> there exists a word o € X* such that P = Q.q;

» for all p,g e P and 8 € L*, if p# q then p.5 # q.8.
Use ev(A) to denote the set of eventual range of A.
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Eventual ranges and rank

Let A =(Q,X,0) be an automaton. A subset P C Q is an eventual range of A if
> there exists a word o € X* such that P = Q.q;

» for all p,g e P and 8 € L*, if p# q then p.5 # q.8.
Use ev(A) to denote the set of eventual range of A. An eventual-range word of A is
a word o € X* such that Q. € ev(.A). The minimum length of eventual-range words
for A is called the eventual-range threshold of A.

Assume that the state set of A is finite. Observe that the size of eventual ranges of A
are equal. This size is called the rank of A. Define the function C(n, r) as the
maximum eventual-range threshold of all n-state automata of rank r.



Volkov's Deficiency Conjecture

Conjecture (Volkov’ 2004)
Forn>r, C(n,r)=(n—r)

Remark
Since an automaton is synchronizing if and only if its rank equals 1, the above
conjecture generalizes the Cerny Conjecture.

s, w. Margolis, J.-E. Pin, and M. V. Volkov (2004). “Words guaranteeing minimum image”. In: Internat. J. Found. Comput. Sci. 15.2,
pp. 259-276. 1SSN: 0129-0541. por: 10.1142/50129054104002406.
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An analog problem of Volkov's Deficiency Conjecture

Let A= (Q,X,J) be an automaton. We say that A has Property S if there exists an
integer k such that every word over ¥ of length > k is an eventual-range word of A.
Use S to denote the family of automata with Property S.

If A €S, the strongly eventual-range threshold of A, denoted by sevt(.A), is
defined as the minimum integer k such that Q.«c € ev(A) for every word a € ¥k



An analog problem of Volkov's Deficiency Conjecture

Let A= (Q,X,J) be an automaton. We say that A has Property S if there exists an
integer k such that every word over ¥ of length > k is an eventual-range word of A.
Use S to denote the family of automata with Property S.

If A €S, the strongly eventual-range threshold of A, denoted by sevt(.A), is
defined as the minimum integer k such that Q.«c € ev(A) for every word a € ¥k

Define the function D(n, r) to be the maximum strongly eventual-range threshold of
all n-state automata of rank r in S.

Conjecture (Wu-Z., 2022+)
Forn>r, D(n,r)=n—r.



A lower bound of D(n,r)

The following example shows that D(n,r) > n—r.
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A classification of S
Let A= (Q,X,0) be an automaton. Let A?) be the automaton (@', X, d) such that
> Q=9 U@
» §(P,a)=P.a={d(p,a): pe P} forall Pe Q and ac ¥.



A classification of S
Let A= (Q,X,0) be an automaton. Let A?) be the automaton (@', X, d) such that
> Q=9 U@
» §(P,a)=P.a={d(p,a): pe P} forall Pe Q and ac ¥.
A pair of states p, g in A is compressible if there exists « € ¥* such that p.a = g.a.
Use com(.A) to denote the set of compressible pairs.

Theorem (Wu-Z., 2022+)

Let G be the arc-colored digraph correponding to A®). Then A € S if and only if the
induced subdigraph G[com(.A)] of G on com(.A) is acyclic.

C CCompreSﬁibIe Pairs) — Oncompressible Pairs) D

T~

acyclic Singleton Sets D




Some remarks on the classification
Let A be an automaton in S.

» The acyclic property allows us to define a partial order <4 on com(.A) as P; < P,
if there exists v € ©* such that P; = P».c.
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Some remarks on the classification
Let A be an automaton in S.

» The acyclic property allows us to define a partial order <4 on com(.A) as P; < P,
if there exists v € ©* such that P; = P».c.

» The maximum size of a chain (a totally ordered subset) in the poset
(com(A), < 4) equals the strongly eventual-range threshold of A.

» Forn>r, D(n,r) < (g) — (5)

at most ('2’) — (g) vertices at least (5) vertices

C [Compreséible Pairs] — [Incompres‘sible Pairs} D
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Congruences and quotient automata

An equivalence relation p on the state set Q of an automata A = (Q, X, J) is called a
congruence if (p, q) € p implies (p.a, g.a) € p forall p,g€ Q and a € ¥.



Congruences and quotient automata

An equivalence relation p on the state set Q of an automata A = (Q, X, J) is called a

congruence if (p, q) € p implies (p.a, g.a) € p forall p,g€ Q and a € ¥.
For a congruence p of A, the quotient automaton A /p is the automaton (Q', X, d,)

where
> Q' ={[q],: g€ Q};
> 5P([q]pv a) = [5(q7 a)]P'



Rank 1

Theorem (Bleak-Cameron-Maissel-Navas-Olukoya® 2019 )
Forn>1, D(n,1)=n—1.

Proof.
We apply induction on n. For n =1, it clearly holds D(1,1) = 0.

8Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the
Higman groups Gp . arXiv: 1605.09302 [math.GR].
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Forn>1, D(n,1)=n—1.

Proof.

We apply induction on n. For n =1, it clearly holds D(1,1) = 0.

Let A =(Q,X,0) €S be an n-state automaton of rank 1. Take a minimal element
{p, q} in the poset (com(.A), =< 4). Since rank(.A) = 1, we have com(A) = ((2‘)) Then
p.a=q.afor all a € X. Define p = {(x,x) : x € Q}U{(p,q),(q,p)}. Observe that p
is a congruence of A.
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Rank 1

Theorem (Bleak-Cameron-Maissel-Navas-Olukoya® 2019 )
Forn>1, D(n,1)=n—1.

Proof.
We apply induction on n. For n =1, it clearly holds D(1,1) = 0.
Let A =(Q,X,0) €S be an n-state automaton of rank 1. Take a minimal element
{p, q} in the poset (com(.A), =< 4). Since rank(.A) = 1, we have com(A) = ((2‘)) Then
p.a=q.afor all a € X. Define p = {(x,x) : x € Q}U{(p,q),(q,p)}. Observe that p
is a congruence of A. One can check that

> A/p€eS;

» rank(A/p) =1,

> sevt(A) < sevt(A/p)+ 1.
By induction assumption, sevt(A) < sevt(A/p)+1<n—2+1=n—1. Hence
D(n,1)=n—-1. O

8Collin Bleak et al. (2019). The further chameleon groups of Richard Thompson and Graham Higman: Automorphisms via dynamics for the
Higman groups Gp . arXiv: 1605.09302 [math.GR].
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Eventual range automata

Let A =(Q,X,0) be an automaton. Let EV(A) = (ev(A), X, ) be the eventual
range automaton of A such that

» 0(P,a) = P.a={d(p,a): pe P} forall Pcev(A)andack.
An automaton is irreducible if for every two states p, g, there exists a word « such
that p.a=gq.
Lemma

Let A be an automaton in S. Then EV(A) is an automaton of rank 1 in S. Moreover,
if A is irreducible, then sevt(A) = sevt(EV(A)).



Rank 2

Theorem (Wu-Z., 2022+)
Forn>2, D(n,2) =n—2.

Proof.
We apply induction on n. For n = 2, it clearly holds D(2,2) = 0.
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Rank 2

Theorem (Wu-Z., 2022+)
Forn>2, D(n,2)=n-—2.

Proof.

We apply induction on n. For n = 2, it clearly holds D(2,2) = 0.

Let A =(Q,X,d) €S be an n-state irreducible automaton of rank 2. We shall show
sevt(,A) < n — 2 (the proof of the non-irreducible case is similar, but involves more
technical details.)

CASE 1. All eventual ranges of A are pairwise disjoint.
We have sevt(A) = sevt(EV(A)) < |ev(A)|-1<53-1<n-2.



Rank 2, Cont'd

CASE 2. There exist Py, P> € ev(.A) such that [Py N P| = 1.

Take a minimal element { Ty, To} in the poset (com(EV(A)), Zgy(a)) such that
{T1, T2} Zevay {P1, P2}
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Take a minimal element {71, T2} in the poset (com(EV(A)), Zgy(4)) such that
{T1, T2} Zeva) {P1, P2}. Observe that T3 N T = 1. Assume that T3 = {p, x} and
T, = {q, x} satisfying p # q.
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CASE 2. There exist Py, P> € ev(.A) such that [Py N P| = 1.

Take a minimal element { Ty, To} in the poset (com(EV(A)), Zgy(a)) such that

{T1, T2} Zeya) {P1, P2}. Observe that | T3 N Tp| = 1. Assume that T; = {p, x} and
T>» = {q, x} satisfying p # q. Since rank(EV(A)) = 1, it holds that T1.a = Ty.a for
all a € . Therefore p.a = gqg.a for all a € L.



Rank 2, Cont'd

CASE 2. There exist Py, P> € ev(.A) such that [Py N P| = 1.

Take a minimal element { Ty, To} in the poset (com(EV(A)), Zgy(a)) such that

{T1, T2} Zeya) {P1, P2}. Observe that | T3 N Tp| = 1. Assume that T; = {p, x} and
T>» = {q, x} satisfying p # q. Since rank(EV(A)) = 1, it holds that T1.a = Ty.a for
all a € . Therefore p.a = gqg.a for all a € L.

Define p = {(x,x) : x € Q} U{(p, q), (g, p)}. Observe that p is a congruence of A.
One can check that

> A/p€eS;
» A /pis irreducible;
» rank(A/p) =2;
> sevt(A) < sevt(A/p)+ 1.
By induction assumption, sevt(A) < sevt(A/p)+1<n—3+1=n-2. O



Rank 3

Theorem (Wu-Z., 2022+)

For n >3, D(n,3) = o(n?).

Proof.

We apply induction on n. For n = 3, it clearly holds D(3,3) = 0.

Let A= (Q,X,0) € S be an n-state irreducible automaton of rank 3. (the proof of the
non-irreducible case is similar, but involves more technical details.)



Rank 3

Theorem (Wu-Z., 2022+)

For n >3, D(n,3) = o(n?).

Proof.

We apply induction on n. For n = 3, it clearly holds D(3,3) = 0.

Let A= (Q,X,0) € S be an n-state irreducible automaton of rank 3. (the proof of the
non-irreducible case is similar, but involves more technical details.)

CASE 1. There exists Py, P2, P3 € ev(.A) such that one of the following conditions
holds:

> ‘Pl N P2| =2:
>‘P]_ﬂP2|:|P2ﬂP3|:|P3ﬂP1’:1andPlﬂP2ﬁP3:®.
By using some combinatorial arguments, we can show that there exists a pair of states

p,q € Q such that p.a = g.a for all a € ¥. Using the similar arguments in the previous
proofs, we can obtain that sevt(A) < o(n?).



Triangle Removal Lemma

Define f(n) as the maximum number of hyperedges in a 3-uniform hypergraph which
does not have a sub-hypergraph isomorphic to F; or F;.

N 9

Theorem

f(n) = o(n?).



Triangle Removal Lemma

Define f(n) as the maximum number of hyperedges in a 3-uniform hypergraph which
does not have a sub-hypergraph isomorphic to F; or F;.

[ 9
A TN
- 7o
Theorem
f(n) = o(n?).
This theorem is a corollary of the Triangle Removal Lemma.

Theorem (Triangle Removal Lemma)

Every graph on n vertices with o(n®) triangles (the complete graph on three vertices)
can be made triangle-free by removing at most o(n?) edges.



Rank 3, Cont'd

N 9

CASE 2. For all distinct P, P2, P3 € ev(A) such that none of the following conditions
holds

| 2 ‘Pl N P2’ = 2;
>‘P1QP2|:‘P2ﬂP3’:|P3ﬁP1’:13ndPlﬂP2ﬁP3:®.
Consider the 3-uniform hypergraph H whose vertex set is @ and hyperedge set is

ev(A). Clearly, H has no subgraph isomorphic to F; or F». Then sevt(A) <
sevt(EV(A)) < |ev(A)| — 1 = (the number of hyperedges in H) — 1 = o(n?). O



D(n,r)

We conclude our knowledge of D(n, r) as the following: for n > r,

=n-—r if re{1,2,n—2,n—1,n};
D(n,r) { = o(n?) if r=3;
g(g)-(;) if4<r<n-3.



A generalization

Let A= (Q,X,d) be an automaton such that Q is an n-dimensional vector space over
a field F and 4(-, a) is an affine linear transformation on Q for all a € X. Observe that
every eventual range of A is an affine subspace of @ and they have the same
dimension, denoted by r.

Theorem (Wu-Z. 2022+)
If A€S andr € {0,1}, then sevt(A) < n—r.

Remark
The above theorem is a generalization of the results D(n,1) = n—1 and
D(n,2) =n—2.






