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Primitivity

A nonnegative n-by-n matrix A is called primitive if AX > 0 (entrywise) for some k > 0.

There are several possibilities to generalize the concept “primitivity” from a
nonnegative matrix (Markov process) to a tuple of nonnegative matrices.

Today, we focus on two generalizations:
» primitivity (inhomogeneous Markov process)
» Hurwitz primitivity (multi-dimensional Markov process)

If a process is (Hurwitz) primitive, it has some nice asymptotic behavior.
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Primitive matrix tuples

Let A = (A1,...,Amn) be an m-tuple of nonnegative n-by-n matrices. For each finite
sequence ov = aj - - - oy over [m] = {1,2..., m}, write A, for Ay, --- Ay, and call it a
product over A of length k.
» The m-tuple A is called primitive if there exists a finite sequence a over [m] such
that
Aa > 0.

» The minimum length of positive products over A is called the primitive index of

A.
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Types of sequences

Let @ = aq - - - oy be a sequence over a set X.

» For any x € X, we denote the number of occurrences of x in the word a by |a,
that is
alx=[{i€[K: ai=x}.

> The type of a, denoted by t(«), is the vector in NX such that
t(a)(x) = lal
for each x € X.

Example
The type of the sequence ov = 1442112 over {1,2,3,4} is

t(a) = (3,2,0,2).
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Hurwitz products and Hurwitz primitivity

Let A = (A1,...,Am) an m-tuple of nonnegative n-by-n matrices. For each

T=(T1,...,7m) € N7, let
A= D> Aa
a: t(a)=7

We call A” a Hurwitz product of A of length |7 :=>"", 7.

» The tuple A is Hurwitz primitive if it owns a positive Hurwitz product.

» The minimum length of positive Hurwitz products is called the Hurwitz primitive

index of A.

Example

> A= (A1, A2 As).

> AL30) — AJ A3 4 Ay AL A2 + AZALAg + ABA.
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Problems

» For a matrix tuple, how to determine whether it is (Hurwitz) primitive or not?

» For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product
of it?

» What is the maximum (Hurwitz) primitive index of all (Hurwitz) primitive
m-tuples of n-by-n nonnegative matrices?

6/23



Convension

non-negative matrix tuple <« Boolean matrix tuple <> arc-labelled digraph
Q

0 2 0 3 00 0 1 0 1 00

00 3,10 2 0 “ 00 1,10 1 0 > S22

1 00 0 0 1 100 0 0 1
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Determine Problems

> [Gerencsér-Gusev-Jungers?, 2018] The determine problem of primitivity is NP-hard
(even for two matrices).

» The algorithmic complexity of determining Hurwitz primitivity is still unknown.

?Balézs Gerencsér, Vladimir V. Gusev, and Raphaél M. Jungers (2018). “Primitive sets of

nonnegative matrices and synchronizing automata”. In: SIAM J. Matrix Anal. Appl. 39.1, pp. 83-98.
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Two subfamilies of square matrices

» The set of nonnegative n-by-n matrices that has no zero rows is denoted by
NZ;(n). (row-stochastic matrix)

> The set of nonnegative n-by-n matrices that has no zero rows and no zero
columns is denoted by NZ5(n). (doubly-stochastic matrix)
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Block permutation matrices

Let A be an n-by-n matrix. Let 7 = (my,...,7,) be a partition of [n]. We say that A
preserves the partition 7 if there exists a permutation o € Sym, such that

A(mi, mj) = 0 whenever j # o (i)
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Two characterization theorems

» A tuple of nonnegative matrices A is irreducible if ) ,_ . A is irreducible.
> A partition is trivial if it contains at least two parts.

Theorem (Protasov-Voynov®, 2012)

Let A be an irreducible tuple of NZo-matrices. The tuple A is not primitive if and only
if there exists a non-trivial partition 7 such that every matrix in A preserves .
Theorem (Protasov*, 2013)

Let A be an irreducible tuple of NZ1-matrices. The tuple A is not Hurwitz primitive if
and only if there exists a non-trivial partition m such that every matrix in A preserves m
and all these permutations corresponding to members of A commute with each other.

3V.Yu. Protasov and A.S. Voynov (2012). “Sets of nonnegative matrices without positive
products”. In: Linear Algebra and its Applications 437.3, pp. 749-765.
*V.Yu. Protasov (2013). “Classification of k-primitive sets of matrices”. In: SIAM J. Matrix Anal.
34.3, pp. 1174-1188.
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Different proofs

Characterization theorem of primitive matrices in NZy(n):

» Protasov-Voynov (2012) give the first proof by using geometrical properties of
affine operators on polyhedra.

» Three combinatorial proofs are found by Al'pin-Alpina (2013),
Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).

» Using analytic method, Protasov (2021) gives a new proof.
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Different proofs

Characterization theorem of primitive matrices in NZy(n):

» Protasov-Voynov (2012) give the first proof by using geometrical properties of
affine operators on polyhedra.

» Three combinatorial proofs are found by Al'pin-Alpina (2013),
Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).

» Using analytic method, Protasov (2021) gives a new proof.
Characterization theorem of Hurwitz primitive matrices in NZ;(n):

» The only proof so far is reported by Protasov (2013), which is based on some
earlier work of Olesky-Shader-Driessche (2002).

We will present a sketch of a unified combinatorial proof of these two characterization
theorems. The unified proof provides a faster determine algorithm of (Hurwitz)
primitivity.
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A sketch of the proof (primitive)

Let A be a m-tuple of nonnegative n-by-n NZy-matrices.
Define =~ to be the binary relation on [n] such that i = j if for all 7,/ € [n] and for all
finite sequence « over [m| satisfying

Au(iy /) >0 and  A.(,f) >0,
there exists k € [n] and a sequence 3 such that
Ag(7/ k) >0 and  Ag(f, k) > 0.

The relation = is called the stable relation of A.
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A sketch of the proof (Hurwitz primitive)
Let A be a m-tuple of nonnegative n-by-n NZ;-matrices.

. h h
Define = to be the binary relation on [n] such that i = j if for all 7,/ € [n] and for all
vector 7 € N satisfying

A(i, /) >0 and A"(j,j) >0,
there exists k € [n] and a vector 5 € N such that
AY(7, k) >0 and AY(f, k) > 0.

h . .
The relation = is called the Hurwitz stable relation of A.
It is routine to verify the following statements.

. h . . .
» The relation = is an equivalence relation.

> Let 7 be the partition which is formed by the equivalence class of ;Z The
matrices in A preserve T.

» The partition 7 is the unique minimal (finest) partition of [n] such that all
matrices in A preserve 7 and all these permutations corresponding to members of

A commute with each other. 1423



Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.
» px(n) = the maximum primitive index of all primitive tuples of n-by-n X-matrices;

» hpx(n) = the maximum Hurwitz primitive index of all Hurwitz primitive tuples of
n-by-n X-matrices.

We will present some results on pyz,(n) and hpyz, (n).
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PNZQ(”) and hPNzl(”)

» [Blondel-Jungers-Olshevsky®, 2015]

> [Gusev®, 2013]

®Vincent D. Blondel, Raphaél M. Jungers, and Alex Olshevsky (2015). “On primitivity of sets of
matrices”. In: Automatica J. IFAC 61, pp. 80-88.
®Vladimir V. Gusev (2013). “Lower bounds for the length of reset words in Eulerian automata”. In:

Internat. J. Found. Comput. Sci. 24.2, pp. 251-262.
16/23



PNZQ(”) and hPNzl(”)

» [Blondel-Jungers-Olshevsky®, 2015]

2 3
n n°+2n-—3
?SPNZZ(H)ST

> [Gusev®, 2013; Wu-Z., 2023]

n 2
(=12 < oz, ) < 2c(n)+ | 525 — o

®Vincent D. Blondel, Raphaél M. Jungers, and Alex Olshevsky (2015). “On primitivity of sets of
matrices”. In: Automatica J. IFAC 61, pp. 80-88.
®Vladimir V. Gusev (2013). “Lower bounds for the length of reset words in Eulerian automata”. In:

Internat. J. Found. Comput. Sci. 24.2, pp. 251-262.
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Synchronizing automata

» A square Boolean matrix is called an automaton matrix if each row of A
contains a unique 1.
> An n-state automaton is a tuple of n-by-n automaton matrices.

» An automaton A is synchronizing if there exists a product 4, which contains a
positive column.

» The minimum length of such products is called synchronizing index of A.

Example (4-state synchronizing automaton)

— > — > —> —> —>
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Cerny Conjecture

Define the Cerny function c(n) as the maximum synchronizing index of all
synchronizing automata with n states.

Conjecture (Cerny, 19717)

c(n) = (n—1)2

7Jan Cerny, Alica Piricka, and Blanka Rosenauerova (1971). “On directable automata”. In:

Kybernetika (Prague) 7, pp. 289-298. 1SsN: 0023-5954.
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Some progresses on Cerny Conjecture

In 1964, Cerny® found a family of automata {C,} such that C, is an n-state
synchronizing automaton whose synchronizing index equals (n — 1)2. This shows that

(n—1)% < c(n).

8Jan Cerny (1964). “A remark on homogeneous experiments with finite automata”. In: Mat.-Fyz.
Casopis. Sloven. Akad. Vied. 14. (Slovak. English summary), pp. 208—216. 1SSN: 0543-0046.
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Some progresses on Cerny Conjecture, Cont'd

There are some upper bounds of c(n) which roughly equals O(%).

: n—n
> [Frankl®-Pint? 1982] c(n) < 5" < 0(0.16667n)

> [Szyku){all 2018] c(n) < 85059n3+9002§{112f6}196504n710648 < 0(016643173)

> [Shitov!? 2019] c(n) < (g5 + 7osmes ) n° + o(n®) < 0(0.16540n%)

°P. Frankl (1982). “An extremal problem for two families of sets”. In: European J. Combin. 3.2,
pp. 125-127.

10 _E. Pin (1983). “On two combinatorial problems arising from automata theory”. In:
Combinatorial mathematics (Marseille-Luminy, 1981). Vol. 75. North-Holland Math. Stud.
Pp. 535-548.

"Marek Szykuta (2018). “Improving the upper bound and the length of the shortest reset words”.
In: vol. 96. LIPlcs. Leibniz Int. Proc. Inform. Art. No. 56, 13.

12y Shitov (2019). “An improvement to a recent upper bound for synchronizing words of finite
automata”. In: Journal of Automata, Languages and Combinatorics 24, pp. 367-373.
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Connection between Hurwitz primitive NZ;-matrix tuples and
Synchronizing Automata

Let A be an Hurwitz primitive tuple of n-by-n Boolean NZ;-matrix.
> B = .AU{A,'AJ' + AjA,' D Aj AJ' S A}
» C={C: C< Be B and Cis an automaton matrix}.

Observation (Wu-Z., 2023)
The automaton C is synchronizing.
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Proof of the upper bound of hpyz, (n)

» Regard A= (Aq,...,An) as an arc-labeled digraph D, where V(D) = [n] and
E(D) = {x5 y: Aux,y) > 0}.
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is type-T.
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Find a positive Hurwitz product of A < find 7 € N™ such that for all vertices x
and y there exists a walk from x to y such that the arc-label sequence of this walk
is type-T.

By the observation in the last page, there exists 7/ € N™ and a vertex z such that
for each vertex x there exists a walk from x to z satisfying the arc-label sequence
of this walk is type-7" and |7/| < 2¢(n).

Since the digraph D is strongly connected, there exists a closed walk W which
visits every vertex and has length at most L%J

For all vertices x and y, we “connect” W and one of 7/-walks in a proper way to
construct a walk from x to y.
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Summary

Primitive Hurwitz Primitive
Assumption NZ, NZ;
Determine problem | NP-hard | O(n’*m) ? o(n’*m? + nm)
Finding such 3 N 3 9
2 product NP-hard | O(n*m) ‘ O(n*m?)
Finding such a
- _ ? ?
shortest product NP-hard | NP-hard ' '
Lower bounds n 2
7(175) n” m+1 _ 2
of indices 3 2 Cn (n—1)"+1
Upper bounds 35059 | O(n®) | mimn™*1 4 2 ()
of indices
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