Hurwitz primitivity and synchronizing automata

Yinfeng Zhu
Ural Federal University

2023 天津图论组合青年研讨会 © 南开大学
August 12， 2023

Coauthor

This talk is based on a joint work ${ }^{1}$ with Yaokun Wu.

[^0]
Primitivity

A nonnegative n-by- n matrix A is called primitive if $A^{k}>0$ (entrywise) for some $k \geq 0$.
There are several possibilities to generalize the concept "primitivity" from a nonnegative matrix (Markov process) to a tuple of nonnegative matrices.

Today, we focus on two generalizations:

- primitivity (inhomogeneous Markov process)
- Hurwitz primitivity (multi-dimensional Markov process)

If a process is (Hurwitz) primitive, it has some nice asymptotic behavior.

Primitive matrix tuples

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of nonnegative n-by-n matrices. For each finite sequence $\alpha=\alpha_{1} \cdots \alpha_{k}$ over $[m]=\{1,2 \ldots, m\}$, write \mathcal{A}_{α} for $\boldsymbol{A}_{\alpha_{1}} \cdots \boldsymbol{A}_{\alpha_{k}}$ and call it a product over \mathcal{A} of length k.

- The m-tuple \mathcal{A} is called primitive if there exists a finite sequence α over $[m]$ such that

$$
\mathcal{A}_{\alpha}>0 .
$$

- The minimum length of positive products over \mathcal{A} is called the primitive index of \mathcal{A}.

Types of sequences

Let $\alpha=\alpha_{1} \cdots \alpha_{k}$ be a sequence over a set X.

- For any $x \in X$, we denote the number of occurrences of x in the word α by $|\alpha|_{x}$, that is

$$
|\alpha|_{x}=\left|\left\{i \in[k]: \alpha_{i}=x\right\}\right| .
$$

- The type of α, denoted by $\mathrm{t}(\alpha)$, is the vector in \mathbb{N}^{X} such that

$$
\mathrm{t}(\alpha)(x)=|\alpha|_{x}
$$

for each $x \in X$.

Example

The type of the sequence $\alpha=1442112$ over $\{1,2,3,4\}$ is

$$
\mathrm{t}(\alpha)=(3,2,0,2)
$$

Hurwitz products and Hurwitz primitivity

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ an m-tuple of nonnegative n-by- n matrices. For each $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right) \in \mathbb{N}^{m}$, let

$$
\mathcal{A}^{\tau}=\sum_{\alpha: \mathrm{t}(\alpha)=\tau} \mathcal{A}_{\alpha} .
$$

We call \mathcal{A}^{τ} a Hurwitz product of \mathcal{A} of length $|\tau|:=\sum_{i=1}^{m} \tau_{i}$.

- The tuple \mathcal{A} is Hurwitz primitive if it owns a positive Hurwitz product.
- The minimum length of positive Hurwitz products is called the Hurwitz primitive index of \mathcal{A}.

Example

- $\mathcal{A}=\left(A_{1}, A_{2}, A_{3}\right)$.
- $\mathcal{A}^{(1,3,0)}=A_{1} A_{2}^{3}+A_{2} A_{1} A_{2}^{2}+A_{2}^{2} A_{1} A_{2}+A_{2}^{3} A_{1}$.

Problems

- For a matrix tuple, how to determine whether it is (Hurwitz) primitive or not?
- For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product of it?
- What is the maximum (Hurwitz) primitive index of all (Hurwitz) primitive m-tuples of n-by- n nonnegative matrices?

Convension

non-negative matrix tuple $\quad \leftrightarrow \quad$ Boolean matrix tuple $\quad \leftrightarrow$ arc-labelled digraph

$$
\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 3 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \leftrightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \leftrightarrow \leftrightarrow \quad \leftrightarrow 1 \xrightarrow{\infty}
$$

Determine Problems

- [Gerencsér-Gusev-Jungers ${ }^{2}$, 2018] The determine problem of primitivity is NP-hard (even for two matrices).
- The algorithmic complexity of determining Hurwitz primitivity is still unknown.

[^1]
Two subfamilies of square matrices

- The set of nonnegative n-by- n matrices that has no zero rows is denoted by $\mathrm{NZ}_{1}(n)$. (row-stochastic matrix)
- The set of nonnegative n-by- n matrices that has no zero rows and no zero columns is denoted by $\mathrm{NZ}_{2}(n)$. (doubly-stochastic matrix)

Block permutation matrices

Let A be an n-by- n matrix. Let $\pi=\left(\pi_{1}, \ldots, \pi_{r}\right)$ be a partition of $[n]$. We say that A preserves the partition π if there exists a permutation $\sigma \in \operatorname{Sym}_{r}$ such that $A\left(\pi_{i}, \pi_{j}\right)=0$ whenever $j \neq \sigma(i)$.

Two characterization theorems

- A tuple of nonnegative matrices \mathcal{A} is irreducible if $\sum_{A \in \mathcal{A}} A$ is irreducible.
- A partition is trivial if it contains at least two parts.

Theorem (Protasov-Voynov ${ }^{3}$, 2012)

Let \mathcal{A} be an irreducible tuple of NZ_{2}-matrices. The tuple \mathcal{A} is not primitive if and only if there exists a non-trivial partition π such that every matrix in \mathcal{A} preserves π.

Theorem (Protasov ${ }^{4}$, 2013)

Let \mathcal{A} be an irreducible tuple of NZ_{1}-matrices. The tuple \mathcal{A} is not Hurwitz primitive if and only if there exists a non-trivial partition π such that every matrix in \mathcal{A} preserves π and all these permutations corresponding to members of \mathcal{A} commute with each other.

[^2]
Different proofs

Characterization theorem of primitive matrices in $\mathrm{NZ}_{2}(n)$:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- Using analytic method, Protasov (2021) gives a new proof.

Different proofs

Characterization theorem of primitive matrices in $\mathrm{NZ}_{2}(n)$:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive matrices in $\mathrm{NZ}_{1}(n)$:

- The only proof so far is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).

Different proofs

Characterization theorem of primitive matrices in $\mathrm{NZ}_{2}(n)$:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive matrices in $\mathrm{NZ}_{1}(n)$:

- The only proof so far is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).

We will present a sketch of a unified combinatorial proof of these two characterization theorems. The unified proof provides a faster determine algorithm of (Hurwitz) primitivity.

A sketch of the proof (primitive)

Let \mathcal{A} be a m-tuple of nonnegative n-by- $n \mathrm{NZ}_{2}$-matrices.
Define \approx to be the binary relation on $[n]$ such that $i \approx j$ if for all $i^{\prime}, j^{\prime} \in[n]$ and for all finite sequence α over [m] satisfying

$$
\mathcal{A}_{\alpha}\left(i, i^{\prime}\right)>0 \quad \text { and } \quad \mathcal{A}_{\alpha}\left(j, j^{\prime}\right)>0,
$$

there exists $k \in[n]$ and a sequence β such that

$$
\mathcal{A}_{\beta}\left(i^{\prime}, k\right)>0 \quad \text { and } \quad \mathcal{A}_{\beta}\left(j^{\prime}, k\right)>0 .
$$

The relation \approx is called the stable relation of \mathcal{A}.

A sketch of the proof (primitive)

Let \mathcal{A} be a m-tuple of nonnegative n-by- $n \mathrm{NZ}_{2}$-matrices.
Define \approx to be the binary relation on $[n]$ such that $i \approx j$ if for all $i^{\prime}, j^{\prime} \in[n]$ and for all finite sequence α over [m] satisfying

$$
\mathcal{A}_{\alpha}\left(i, i^{\prime}\right)>0 \quad \text { and } \quad \mathcal{A}_{\alpha}\left(j, j^{\prime}\right)>0,
$$

there exists $k \in[n]$ and a sequence β such that

$$
\mathcal{A}_{\beta}\left(i^{\prime}, k\right)>0 \quad \text { and } \quad \mathcal{A}_{\beta}\left(j^{\prime}, k\right)>0 .
$$

The relation \approx is called the stable relation of \mathcal{A}.
It is routine to verify the following statements.

- The relation \approx is an equivalence relation.
- Let π be the partition which is formed by the equivalence class of \approx. The matrices in \mathcal{A} preserve π.
- The partition π is the unique minimal (finest) partition of [n] such that all matrices in \mathcal{A} preserve it.

A sketch of the proof (Hurwitz primitive)

Let \mathcal{A} be a m-tuple of nonnegative n-by- $n \mathrm{NZ}_{1}$-matrices.
Define $\stackrel{\text { h }}{\approx}$ to be the binary relation on [n] such that $i \stackrel{h}{\approx} j$ if for all $i^{\prime}, j^{\prime} \in[n]$ and for all vector $\tau \in \mathbb{N}^{m}$ satisfying

$$
\mathcal{A}^{\tau}\left(i, i^{\prime}\right)>0 \quad \text { and } \quad \mathcal{A}^{\tau}\left(j, j^{\prime}\right)>0,
$$

there exists $k \in[n]$ and a vector $\beta \in \mathbb{N}^{m}$ such that

$$
\mathcal{A}^{\gamma}\left(i^{\prime}, k\right)>0 \quad \text { and } \quad \mathcal{A}^{\gamma}\left(j^{\prime}, k\right)>0 .
$$

The relation $\stackrel{h}{\approx}$ is called the Hurwitz stable relation of \mathcal{A}.
It is routine to verify the following statements.

- The relation $\stackrel{h}{\approx}$ is an equivalence relation.
- Let π be the partition which is formed by the equivalence class of $\underset{\approx}{\approx}$. The matrices in \mathcal{A} preserve π.
- The partition π is the unique minimal (finest) partition of [n] such that all matrices in \mathcal{A} preserve π and all these permutations corresponding to members of \mathcal{A} commute with each other.

Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.

- $\mathrm{p}_{X}(n) \doteq$ the maximum primitive index of all primitive tuples of n-by- $n X$-matrices;
- $\mathrm{hp}_{X}(n) \doteq$ the maximum Hurwitz primitive index of all Hurwitz primitive tuples of n-by-n X-matrices.

We will present some results on $\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$.

$\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- [Blondel-Jungers-Olshevsky ${ }^{5}$, 2015]

$$
\frac{n^{2}}{2} \leq \mathrm{p}_{\mathrm{NZ}_{2}}(n) \leq \frac{n^{3}+2 n-3}{3}
$$

- [Gusev $\left.{ }^{6}, 2013\right]$

$$
(n-1)^{2} \leq \mathrm{hp}_{\mathrm{NZ}_{1}}(n)
$$

[^3]$\mathrm{p}_{\mathrm{NZ}_{2}}(n)$ and $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- [Blondel-Jungers-Olshevsky ${ }^{5}$, 2015]

$$
\frac{n^{2}}{2} \leq \mathrm{p}_{\mathrm{NZ}_{2}}(n) \leq \frac{n^{3}+2 n-3}{3}
$$

- [Gusev ${ }^{6}$, 2013; Wu-Z., 2023]

$$
(n-1)^{2} \leq \mathrm{hp}_{\mathrm{NZ}_{1}}(n) \leq 2 \mathrm{c}(n)+\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor=O\left(n^{3}\right)
$$

[^4]
Synchronizing automata

- A square Boolean matrix is called an automaton matrix if each row of A contains a unique 1.
- An n-state automaton is a tuple of n-by- n automaton matrices.
- An automaton \mathcal{A} is synchronizing if there exists a product \mathcal{A}_{α} which contains a positive column.
- The minimum length of such products is called synchronizing index of \mathcal{A}.

Example (4-state synchronizing automaton)

Černý Conjecture

Define the Černý function $c(n)$ as the maximum synchronizing index of all synchronizing automata with n states.

Conjecture (Černý, 19717)
$\mathrm{c}(n)=(n-1)^{2}$.

[^5]
Some progresses on Černý Conjecture

In 1964, Černý ${ }^{8}$ found a family of automata $\left\{\mathcal{C}_{n}\right\}$ such that \mathcal{C}_{n} is an n-state synchronizing automaton whose synchronizing index equals $(n-1)^{2}$. This shows that

$$
(n-1)^{2} \leq \mathrm{c}(n)
$$

[^6]
Some progresses on Černý Conjecture

In 1964, Černý ${ }^{8}$ found a family of automata $\left\{\mathcal{C}_{n}\right\}$ such that \mathcal{C}_{n} is an n-state synchronizing automaton whose synchronizing index equals $(n-1)^{2}$. This shows that

$$
(n-1)^{2} \leq \mathrm{c}(n)
$$

[^7]
Some progresses on Černý Conjecture, Cont'd

There are some upper bounds of $c(n)$ which roughly equals $O\left(\frac{n^{3}}{6}\right)$.

- [Frankl ${ }^{9}-$ Pin 10 1982] $\mathrm{c}(n) \leq \frac{n^{3}-n}{6} \leq O\left(0.16667 n^{3}\right)$
- [Szykuła $\left.{ }^{11} 2018\right] \mathrm{c}(n) \leq \frac{85059 n^{3}+90024 n^{2}+196504 n-10648}{511104} \leq O\left(0.16643 n^{3}\right)$
- SShitov $\left.^{12} 2019\right] \mathrm{c}(n) \leq\left(\frac{7}{48}+\frac{15625}{798768}\right) n^{3}+o\left(n^{3}\right) \leq O\left(0.16540 n^{3}\right)$

[^8]
Connection between Hurwitz primitive NZ_{1}-matrix tuples and Synchronizing Automata

Let \mathcal{A} be an Hurwitz primitive tuple of n-by- n Boolean NZ_{1}-matrix.

- $\mathcal{B} \doteq \mathcal{A} \cup\left\{A_{i} A_{j}+A_{j} A_{i}: A_{i}, A_{j} \in \mathcal{A}\right\}$.
- $\mathcal{C} \doteq\{C: C \leq B \in \mathcal{B}$ and C is an automaton matrix $\}$.

Observation (Wu-Z., 2023)
The automaton \mathcal{C} is synchronizing.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 \mathrm{c}(n)$.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 \mathrm{c}(n)$.
- Since the digraph D is strongly connected, there exists a closed walk W which visits every vertex and has length at most $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$.

Proof of the upper bound of $\mathrm{hp}_{\mathrm{NZ}_{1}}(n)$

- Regard $\mathcal{A}=\left(A_{1}, \ldots, A_{m}\right)$ as an arc-labeled digraph D, where $V(D)=[n]$ and $E(D)=\left\{x \xrightarrow{k} y: A_{k}(x, y)>0\right\}$.
- Find a positive Hurwitz product of $\mathcal{A} \Leftrightarrow$ find $\tau \in \mathbb{N}^{m}$ such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type- τ.
- By the observation in the last page, there exists $\tau^{\prime} \in \mathbb{N}^{m}$ and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type- τ^{\prime} and $\left|\tau^{\prime}\right| \leq 2 \mathrm{c}(n)$.
- Since the digraph D is strongly connected, there exists a closed walk W which visits every vertex and has length at most $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$.
- For all vertices x and y, we "connect" W and one of τ^{\prime}-walks in a proper way to construct a walk from x to y.

Summary

	Primitive		Hurwitz Primitive	
Assumption		NZ_{2}		NZ_{1}
Determine problem	NP-hard	$O\left(n^{2} m\right)$	$?$	$O\left(n^{2} m^{2}+n^{3} m\right)$
Finding such a product	NP-hard	$O\left(n^{3} m\right)$	$?$	$O\left(n^{3} m^{2}\right)$
Finding such a shortest product	NP-hard	NP-hard	$?$	$?$
Lower bounds of indices	$3^{\frac{n}{3}(1-\epsilon)}$	$\frac{n^{2}}{2}$	$C n^{m+1}$	$(n-1)^{2}+1$
Upper bounds of indices	$3^{\frac{n}{3}(1+\epsilon)}$	$O\left(n^{3}\right)$	$m!m n^{m+1}+n^{2}$	$O\left(n^{3}\right)$

Summary

	Primitive		Hurwitz Primitive	
Assumption		NZ_{2}		NZ_{1}
Determine problem	NP-hard	$O\left(n^{2} m\right)$	$?$	$O\left(n^{2} m^{2}+n^{3} m\right)$
Finding such a product	NP-hard	$O\left(n^{3} m\right)$	$?$	$O\left(n^{3} m^{2}\right)$
Finding such a shortest product	NP-hard	NP-hard	$?$	$?$
Lower bounds of indices	$3^{\frac{n}{3}(1-\epsilon)}$	$\frac{n^{2}}{2}$	$C n^{m+1}$	$(n-1)^{2}+1$
Upper bounds of indices	$3^{\frac{n}{3}(1+\epsilon)}$	$O\left(n^{3}\right)$	$m!m n^{m+1}+n^{2}$	$O\left(n^{3}\right)$

THANK YOU FOR YOUR ATTENTION

[^0]: ${ }^{1}$ Yaokun Wu and Yinfeng Zhu (2023). "Primitivity and Hurwitz Primitivity of Nonnegative Matrix Tuples: A Unified Approach". In: SIAM Journal on Matrix Analysis and Applications 44.1, pp. 196-211. DOI: 10.1137/22M1471535.

[^1]: ${ }^{2}$ Balázs Gerencsér, Vladimir V. Gusev, and Raphaël M. Jungers (2018). "Primitive sets of nonnegative matrices and synchronizing automata". In: SIAM J. Matrix Anal. Appl. 39.1, pp. 83-98.

[^2]: ${ }^{3}$ V.Yu. Protasov and A.S. Voynov (2012). "Sets of nonnegative matrices without positive products". In: Linear Algebra and its Applications 437.3, pp. 749-765.
 ${ }^{4}$ V.Yu. Protasov (2013). "Classification of k-primitive sets of matrices". In: SIAM J. Matrix Anal. 34.3, pp. 1174-1188.

[^3]: ${ }^{5}$ Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky (2015). "On primitivity of sets of matrices". In: Automatica J. IFAC 61, pp. 80-88.
 ${ }^{6}$ Vladimir V. Gusev (2013). "Lower bounds for the length of reset words in Eulerian automata". In: Internat. J. Found. Comput. Sci. 24.2, pp. 251-262.

[^4]: ${ }^{5}$ Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky (2015). "On primitivity of sets of matrices". In: Automatica J. IFAC 61, pp. 80-88.
 ${ }^{6}$ Vladimir V. Gusev (2013). "Lower bounds for the length of reset words in Eulerian automata". In: Internat. J. Found. Comput. Sci. 24.2, pp. 251-262.

[^5]: ${ }^{7}$ Ján Černý, Alica Pirická, and Blanka Rosenauerová (1971). "On directable automata". In: Kybernetika (Prague) 7, pp. 289-298. ISSN: 0023-5954.

[^6]: ${ }^{8}$ Ján Černý (1964). "A remark on homogeneous experiments with finite automata". In: Mat.-Fyz. Časopis. Sloven. Akad. Vied. 14. (Slovak. English summary), pp. 208-216. issN: 0543-0046.

[^7]: ${ }^{8}$ Ján Černý (1964). "A remark on homogeneous experiments with finite automata". In: Mat.-Fyz. Časopis. Sloven. Akad. Vied. 14. (Slovak. English summary), pp. 208-216. issN: 0543-0046.

[^8]: ${ }^{9}$ P. Frankl (1982). "An extremal problem for two families of sets". In: European J. Combin. 3.2, pp. 125-127.
 ${ }^{10} \mathrm{~J} .-\mathrm{E} . \operatorname{Pin}(1983)$. "On two combinatorial problems arising from automata theory". In: Combinatorial mathematics (Marseille-Luminy, 1981). Vol. 75. North-Holland Math. Stud. Pp. 535-548.
 ${ }^{11}$ Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words". In: vol. 96. LIPIcs. Leibniz Int. Proc. Inform. Art. No. 56, 13.
 ${ }^{12} \mathrm{Y}$. Shitov (2019). "An improvement to a recent upper bound for synchronizing words of finite automata". In: Journal of Automata, Languages and Combinatorics 24, pp. 367-373.

