Path-liftable digraph homomorphisms and non-liftable indices

Yinfeng Zhu
Shanghai Jiao Tong University
Joint with Yaokun Wu
August 26
A digraph is a quadruple \((V, E, i, t)\):

- vertex set \(V\); arc set \(E\);
- initial operator \(i : E \rightarrow V\); terminal operator \(t : E \rightarrow V\).

A digraph homomorphism from a digraph \(G\) to a digraph \(H\) is a pair of maps \(\phi = (\phi_0, \phi_1)\) such that the following diagrams commute.
Liftings

A digraph homomorphism $\phi \in \text{hom}(G, H)$ is K-liftable if for every $\alpha \in \text{hom}(K, H)$ there exists $\beta \in \text{hom}(K, G)$ such that $\alpha = \phi \circ \beta$.

\[
\begin{array}{c}
G \\
\downarrow_{\phi} \quad \exists \beta \\
H \leftarrow \downarrow_{\alpha} \quad K
\end{array}
\]
Path-liftable property

P_k denotes the directed path digraph of length k.

\[\cdots \Rightarrow P_2 \text{-liftable} \Rightarrow P_1 \text{-liftable}. \]

A digraph homomorphism is **path-liftable** if it is P_k-liftable for every k. A homomorphism in $\text{hom}(P_k, G)$ is called a k-**walk** of G.

If ϕ is not path-liftable, the **non-liftable index** of ϕ is

\[\delta(\phi) := \text{the length of shortest walk in } H \text{ without any lifting} \]
An example

A non-liftable 8-walk
Question

For given strongly connected digraphs G, H and $\phi : G \rightarrow H$, how to determine whether ϕ is path-liftable or not?

Question

Can we bound $\delta(\phi)$ by the size of G and H?

We will consider the two questions in the following case:

- general case;
- isentropic case, $\lambda_G = \lambda_H$;
- G and H are De Bruijn / Kautz digraphs.
A upper bound of non-liftable indices

For $\phi : G \to H$,

$$\delta(\phi) \leq 2|V_G| - 1.$$

Proof.

- Pick a shortest non-liftable walk (e_1, e_2, \ldots, e_k) in H.
- $R_0 := \phi_0^{-1}(i(e_1))$
- $R_i := \{\text{the terminal vertices of liftings of } (e_1, \ldots, e_i)\}$
- If $R_i = R_j$ and $i < j$, then the walk $(e_1, \ldots, e_i, e_{j+1} \ldots, e_k)$ is also a non-liftable walk.
- $R_0, R_1 \ldots, R_k$ are distinct subsets of V_G. Thus $\delta(\phi) = k \leq 2|V_G| - 1$.

□

This bound is tight.
Let \mathbb{B} be the Boolean semiring. Let \prec be the reverse lexicographical order on \mathbb{B}^n which is define by $x \prec y$ if $x(i) > y(i)$ for the minimum i where $x(i) \neq y(i)$.

Example

\[
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \prec \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \prec \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \prec \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \prec \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \prec \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\]
For $k \in [n]$, define

$$A_k = \begin{pmatrix}
[k-1] & \{k\} & [k+1, n] \\
\{k\} & I & 0 & 0 \\
[k+1, n] & 0 & 0 & J \\
J & J & J & J
\end{pmatrix}.$$

Let $\mathbb{B}^n = \{\pi_i : i \in [2^n]\}$ such that $\pi_i \preceq \pi_j$ if $i \preceq j$. One can check that

$$A_k \pi_i \begin{cases}
\preceq \pi_i & \text{if } k \neq p, \\
= \pi_{i+1} & \text{if } k = p.
\end{cases}$$

Then $0 \in \langle A_k : k \in [n] \rangle$ and any product of $2^n - 2$ elements in \{A_k : k \in [n]\} is not 0.
Construct $\phi : G \rightarrow H$ as follow.

- Let H be the digraph such that $V_H = \{1\}$ and $E_H = [n]$.
- Let G be the digraph such that
 - $V_G = [n]$;
 - $E_G = \{(i, j, k) : A_k(i, j) = 1\}$;
 - initial operator is defined by $i_G((i, j, k)) = i$;
 - terminal operator is defined by $t_G((i, j, k)) = j$.
- Let $\phi : G \rightarrow H$ be the homomorphism such that $\phi_1((i, j, k)) = k$.
- For a walk (e_1, \ldots, e_k) in H,
 \[
 \# \text{ liftings of } (e_1, \ldots, e_k) = \# 1 \text{ in } A_{e_1} A_{e_2} \cdots A_{e_k}.
 \]
- Then $\delta(\phi) = 2^n - 1 = 2^{|V_G|} - 1$.
A dichotomy

Let H be a fixed strongly connected digraph.

Question

Input a digraph G and $\phi : G \rightarrow H$. What is the complexity to determine whether ϕ is path-liftable or not?

If H is a cycle, it is easy (G has non-trivial strongly connected components $\iff \phi$ is path-liftable).

Theorem (Wu, Z.)

If H is not a cycle, then the determine problem is NP-complete.

- A reduction from 3-SAT problem. **blackboard**
Three operators on Boolean semi-field.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\overline{x})</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: Negation

<table>
<thead>
<tr>
<th>(\land)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: Conjunction

<table>
<thead>
<tr>
<th>(\lor)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Disjunction

Let \(x_1, \ldots, x_n\) be Boolean variables. A literal is either a variable or the negation of a variable. A clause is the disjunction of three literals. A 3-CNF formula is the conjunction of clauses.

Example

\[(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor x_4)\]
3-SAT problem

For given a 3-CNF formula \mathcal{F}, the 3-SAT problem is whether or not an assignment of the variables that make $\mathcal{F} = 1$.

Theorem (Cook, 1971)

3-SAT problem is NP-complete.
Spectral radius

Let G and H be digraphs.

- λ_G: the spectral radius of the adjacency matrix of G.
- Note that

$$\lambda_G = \lim_{k \to +\infty} \frac{1}{k} \log \left(|\text{hom}(P_k, G)| \right).$$

- Thus, if $\lambda_G < \lambda_H$, there is no path-liftable homomorphism from G to H.
- What is the phenomenon when $\lambda_G = \lambda_H$?
Let \(\phi \in \text{hom}(G, H) \) and \(\gamma, \gamma' \in \text{hom}(P_k, G) \). We call \((\gamma, \gamma') \) a **diamond** of \(\phi \) if

- distinct: \(\gamma \neq \gamma' \);
- same image: \(\phi \circ \gamma = \phi \circ \gamma' \);
- same initial vertex: \(i(\gamma) = i(\gamma') \);
- same terminal vertex: \(t(\gamma) = t(\gamma') \).

Figure: a diamond
A cubic-time algorithm

Theorem (Well known in symbolic dynamic)

Let G and H be two strongly connected digraphs and $\phi \in \text{hom}(G, H)$, then any two of the following expressions implies the other one.

1. $\lambda_G = \lambda_H$.
2. ϕ is path-liftable.
3. ϕ has no diamond.

Theorem (Even1, 1965)

There is an algorithm to determine whether a homomorphism $\phi \in \text{hom}(G, H)$ has a diamond or not in time $O(|V_G|^3)$.

De Bruijn and Kautz digraphs

- K^+_n: n-vertex complete digraph with loops.
- d-dimension De Bruijn digraph $B(n, d)$: the $(d - 1)$-th line digraph of K^+_n.
- K_n: n-vertex complete digraph without loops.
- d-dimension Kautz digraph $K(n, d)$: the $(d - 1)$-th line digraph of K_n.
Motivation

Definition (Tvrdik, Harbane and Heydemann\(^2\), 1998)

Let \(d \) be an integer, \(d \geq 2 \). Let \(\diamond \) be a binary operation on \(\mathbb{Z}_n \) such that for any \(y_1, \ldots, y_{d-1} \in \mathbb{Z}_n \), the set of \(d - 1 \) equations

\[
x_i \diamond x_{i+1} = y_i, \quad 1 \leq i \leq d - 1
\]

for unknowns \(x_1, \ldots, x_d \) has exactly \(n \) distinct solutions such that \(x_i \in \mathbb{Z}_n \). Then it is said that the operation \(\diamond \) satisfies Property \((P_d)\).

Their problem is to find all binary operations on \(\mathbb{Z}_n \) satisfying Property \((P_d)\) for all \(d \).

Example

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table: An operation satisfies Property \((P_d)\) for all \(d\).
Let \diamond be a binary operation on \mathbb{Z}_n

- \diamond is corresponding to the digraph homomorphism $\phi : B(n, 2) \to B(n, 1)$ such that $\phi_0(a, b) = a \diamond b$.
- One can show that \diamond satisfies Property (P_d) for all d if and only if ϕ is path-liftable.
- Tvrdik, Harbane and Heydemann also consider a variant definition which is corresponding to the digraph homomorphism from $K(n, 2)$ to $K(n, 1)$.
Right-covering (Left-covering) homomorphism

- $\phi \in \text{hom}(G, H)$
- for $v \in V_G$, define $G^+(v) = \{ e \in E_G : i(e) = v \}$.

ϕ is called right-covering if ϕ_1 is surjective from $G^+(v)$ to $H^+(\phi_0(v))$ for all $v \in V_G$.

By symmetry, we define left-covering homomorphisms. We call ϕ a one-sided covering if it is either a right-covering or a left-covering or both.

One-sided covering is always path-liftable.
Conjecture (Tvrdik, Harbane, Heydemann, 1998)

Let \(n \) be a prime and let \(\phi \in \text{hom}(B(n, 2), B(n, 1)) \) and \(\psi \in \text{hom}(K(n + 1, 2), K(n + 1, 1)) \).

- If \(\phi \) is path-liftable, then \(\phi \) is one-sided covering.
- If \(\psi \) is path-liftable, then \(\psi \) is one-sided covering.
- If \(\psi \) is not path-liftable, then \(\delta(\psi) \leq 3 \).

Theorem (Wu,Z.)

Let \(G \) and \(H \) be two \(k \)-regular strongly connected digraphs. If \(\frac{|V_G|}{|V_H|} \) is a prime number, then \(\phi \) is path-liftable iff it is a one-sided covering.

- Define three positive integer parameters \(M(\phi), R(\phi) \) and \(L(\phi) \).
- \(L(\phi)M(\phi)R(\phi) = \frac{|V_G|}{|V_H|} \) is a prime.
- Either \(L(\phi) \) or \(R(\phi) \) equals 1. Thus \(\phi \) is a one-sided covering.
Degree

• Let G, H be two strongly connected k-regular digraphs.

• A bi-infinite walk $\tau \in \text{hom}(P_\infty, G)$ is **doubly transitive** if for every finite walk γ in G, it occurs in τ infinite many times in both directions.

$$\tau = \cdots * * * \gamma * * * \gamma * * * * * * * \gamma * * * * * \cdots$$

• $\phi \in \text{hom}(G, H)$

Lemma

There exists a positive integer $M(\phi)$ such that

$$M(\phi) = |\{\alpha \in X_G : \phi \circ \alpha = \tau\}|$$

for all doubly transitive walk τ.

We call the number $M(\phi)$ the **degree** of ϕ.
Welch indices

Let G and H be two strongly connected k-regular digraphs. Let $\phi \in \text{hom}(G, H)$ be path-liftable homomorphism. For a finite walk γ in G and a finite walk τ in H, define the ϕ-compatible right extension of (γ, τ) to be

$$\mathcal{R}_\phi(\gamma, \tau) \doteq \{ t(\gamma \gamma') : \phi \circ (\gamma \gamma') = \tau \}.$$

Define $R_\phi(\gamma) = \max_{\tau} \{|\mathcal{R}_\phi(\gamma, \tau)|\}$ and $L_\phi(\gamma) = \max_{\tau} \{|\mathcal{L}_\phi(\gamma, \tau)|\}$.
Welch indices, cont’d

- [Hedlund³, 1969] There exists integer $R(\phi)$ and $L(\phi)$ such that $R_\phi(\gamma) = R(\phi)$ and $L_\phi(\gamma) = L(\phi)$ for all γ.

- [Hedlund, 1969] $L(\phi)M(\phi)R(\phi) = \frac{|V_G|}{|V_H|}$.

- In Hedlund’s paper, $G = B(n, k)$ and $H = B(n, k')$. The proof is also valid for k-regular case.