Hurwitz primitivity and synchronizing automata

Yinfeng Zhu

Imperial College London & Shanghai Jiao Tong University

This is joint work with Yaokun Wu

ILAS @GALWAY

June 23, 2022

Primitivity

A nonnegative *n*-by-*n* matrix *A* is called **primitive** if $A^k > 0$ (entrywise) for some $k \ge 0$.

There are several possibilities to generalize the concept "primitivity" from a nonnegative matrix (Markov process) to a tuple of nonnegative matrices.

Today, we focus on two generalizations:

- primitivity (inhomogeneous Markov process)
- Hurwitz primitivity (multi-dimensional Markov process)

If a process is (Hurwitz) primitive, it has some nice asymptotic behavior.

Primitive matrix tuples

Let $\mathcal{A} = (A_1, \ldots, A_m)$ be an *m*-tuple of nonnegative *n*-by-*n* matrices. For each finite sequence $\alpha = \alpha_1 \cdots \alpha_k$ over $[m] = \{1, 2, \ldots, m\}$, write \mathcal{A}_{α} for $\mathcal{A}_{\alpha_1} \cdots \mathcal{A}_{\alpha_k}$ and call it a product over \mathcal{A} of length *k*.

The m-tuple A is called primitive if there exists a finite sequence α over [m] such that

 $\mathcal{A}_{\alpha} > 0.$

The minimum length of positive products over A is called the primitive index of A.

Types of sequences

Let $\alpha = \alpha_1 \cdots \alpha_k$ be a sequence over a set X.

For any x ∈ X, we denote the number of occurrences of x in the word α by |α|_x, that is

$$|\alpha|_{\mathbf{x}} = |\{i \in [k] : \alpha_i = \mathbf{x}\}|.$$

▶ The **type** of α , denoted by $t(\alpha)$, is the vector in \mathbb{N}^X such that

 $\mathsf{t}(\alpha)(x) = |\alpha|_x$

for each $x \in X$.

Example

The type of the sequence $\alpha = 1442112$ over $\{1, 2, 3, 4\}$ is

$$t(\alpha) = (3, 2, 0, 2).$$

Hurwitz products and Hurwitz primitivity

Let $\mathcal{A} = (A_1, \ldots, A_m)$ an *m*-tuple of nonnegative *n*-by-*n* matrices. For each $\tau = (\tau_1, \ldots, \tau_m) \in \mathbb{N}^m$, let

$$\mathcal{A}^{ au} = \sum_{lpha: \ \mathsf{t}(lpha) = au} \mathcal{A}_{lpha} \, .$$

We call \mathcal{A}^{τ} a **Hurwitz product** of \mathcal{A} of length $|\tau| := \sum_{i=1}^{m} \tau_i$.

- ▶ The tuple *A* is **Hurwitz primitive** if it owns a positive Hurwitz product.
- The minimum length of positive Hurwitz products is called the Hurwitz primitive index of A.

Example

•
$$\mathcal{A} = (A_1, A_2, A_3).$$

• $\mathcal{A}^{(1,3,0)} = A_1 A_2^3 + A_2 A_1 A_2^2 + A_2^2 A_1 A_2 + A_2^3 A_1.$

Problems

- ► For a matrix tuple, how to determine whether it is (Hurwitz) primitive or not?
- For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product of it?
- What is the maximum (Hurwitz) primitive index of all (Hurwitz) primitive m-tuples of n-by-n nonnegative matrices?

Determine Problems

- [Gerencsér-Gusev-Jungers¹, 2018] The determine problem of primitivity is NP-hard (even for two matrices).
- > The algorithmic complexity of determining Hurwitz primitivity is still unknown.

¹Balázs Gerencsér, Vladimir V. Gusev, and Raphaël M. Jungers (2018). "Primitive sets of nonnegative matrices and synchronizing automata". In: *SIAM J. Matrix Anal. Appl.* 39.1, pp. 83–98.

Two subfamilies of square matrices

- The set of nonnegative n-by-n matrices that has no zero rows is denoted by NZ₁(n). (row-stochastic matrix)
- The set of nonnegative n-by-n matrices that has no zero rows and no zero columns is denoted by NZ₂(n). (doubly-stochastic matrix)

Block permutation matrices

Let A be an *n*-by-*n* matrix. Let $\pi = (\pi_1, \ldots, \pi_r)$ be a partition of [*n*]. We say that A **preserves the partition** π if there exists a permutation $\sigma \in \text{Sym}_r$ such that $A(\pi_i, \pi_j) = 0$ whenever $j \neq \sigma(i)$.

Two characterization theorems

- A tuple of nonnegative matrices A is **irreducible** if $\sum_{A \in A} A$ is irreducible.
- ► A partition is **trivial** if it contains at least two parts.

Theorem (Protasov-Voynov², 2012)

Let A be an irreducible tuple of NZ₂-matrices. The tuple A is not primitive if and only if there exists a non-trivial partition π such that every matrix in A preserves π .

Theorem (Protasov³, 2013)

Let \mathcal{A} be an irreducible tuple of NZ₁-matrices. The tuple \mathcal{A} is not Hurwitz primitive if and only if there exists a non-trivial partition π such that every matrix in \mathcal{A} preserves π and all these permutations corresponding to members of \mathcal{A} commute with each other.

²V.Yu. Protasov and A.S. Voynov (2012). "Sets of nonnegative matrices without positive products". In: *Linear Algebra and its Applications* 437.3, pp. 749–765.

³V.Yu. Protasov (2013). "Classification of *k*-primitive sets of matrices". In: *SIAM J. Matrix Anal.* 34.3, pp. 1174–1188.

Different proofs

Characterization theorem of primitive matrices in $NZ_2(n)$:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- ▶ Using analytic method, Protasov (2021) gives a new proof.

Different proofs

Characterization theorem of primitive matrices in $NZ_2(n)$:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- ▶ Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive matrices in $NZ_1(n)$:

The only proof so far is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).

Different proofs

Characterization theorem of primitive matrices in $NZ_2(n)$:

- Protasov-Voynov (2012) give the first proof by using geometrical properties of affine operators on polyhedra.
- Three combinatorial proofs are found by Al'pin-Alpina (2013), Blondel-Jungers-Olshevsky (2015), and Al'pin-Alpina (2019).
- ▶ Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive matrices in $NZ_1(n)$:

The only proof so far is reported by Protasov (2013), which is based on some earlier work of Olesky-Shader-Driessche (2002).

We will present a sketch of a unified proof of these two characterization theorems.

A sketch of the proof (primitive)

Let \mathcal{A} be a *m*-tuple of nonnegative *n*-by-*n* NZ₂-matrices. Define \approx to be the binary relation on [*n*] such that $i \approx j$ if for all $i', j' \in [n]$ and for all finite sequence α over [*m*] satisfying

 $\mathcal{A}_{lpha}(i,i')>0 \quad ext{and} \quad \mathcal{A}_{lpha}(j,j')>0,$

there exists $k \in [n]$ and a sequence β such that

 $\mathcal{A}_eta(i',k)>0 \quad ext{and} \quad \mathcal{A}_eta(j',k)>0.$

The relation \approx is called the **stable relation** of \mathcal{A} .

A sketch of the proof (primitive)

Let \mathcal{A} be a *m*-tuple of nonnegative *n*-by-*n* NZ₂-matrices. Define \approx to be the binary relation on [n] such that $i \approx j$ if for all $i', j' \in [n]$ and for all finite sequence α over [m] satisfying

 $\mathcal{A}_{lpha}(i,i')>0 \quad ext{and} \quad \mathcal{A}_{lpha}(j,j')>0,$

there exists $k \in [n]$ and a sequence β such that

 $\mathcal{A}_{eta}(i',k)>0 \quad ext{and} \quad \mathcal{A}_{eta}(j',k)>0.$

The relation \approx is called the **stable relation** of A. It is routine to verify the following statements.

- The relation \approx is an equivalence relation.
- Let π be the partition which is formed by the equivalence class of ≈. The matrices in A preserve π.
- The partition π is the unique minimal (finest) partition of [n] such that all matrices in A preserve it.

A sketch of the proof (Hurwitz primitive)

Let \mathcal{A} be a *m*-tuple of nonnegative *n*-by-*n* NZ₁-matrices. Define $\stackrel{h}{\approx}$ to be the binary relation on [*n*] such that $i \stackrel{h}{\approx} j$ if for all $i', j' \in [n]$ and for all vector $\tau \in \mathbb{N}^m$ satisfying

 $\mathcal{A}^{ au}(i,i')>0 \quad ext{and} \quad \mathcal{A}^{ au}(j,j')>0,$

there exists $k \in [n]$ and a vector $\beta \in \mathbb{N}^m$ such that

 $\mathcal{A}^{\gamma}(i',k)>0 \quad ext{and} \quad \mathcal{A}^{\gamma}(j',k)>0.$

The relation $\stackrel{h}{\approx}$ is called the **Hurwitz stable relation** of \mathcal{A} . It is routine to verify the following statements.

• The relation $\stackrel{h}{\approx}$ is an equivalence relation.

Let π be the partition which is formed by the equivalence class of ^h≈. The matrices in A preserve π.

The partition π is the unique minimal (finest) partition of [n] such that all matrices in A preserve π and all these permutations corresponding to members of A commute with each other.

Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.

- ▶ $p_X(n) \doteq$ the maximum primitive index of all primitive tuples of *n*-by-*n* X-matrices;
- hp_X(n) = the maximum Hurwitz primitive index of all Hurwitz primitive tuples of n-by-n X-matrices.

We will present some results on $p_{NZ_2}(n)$ and $hp_{NZ_1}(n)$.

 $p_{NZ_2}(n)$ and $hp_{NZ_1}(n)$

► [Blondel-Jungers-Olshevsky⁴, 2015]

$$\frac{n^2}{2} \le p_{NZ_2}(n) \le \frac{n^3 + 2n - 3}{3}$$

$$(n-1)^2 \leq hp_{\mathsf{NZ}_1}(n)$$

⁴Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky (2015). "On primitivity of sets of matrices". In: *Automatica J. IFAC* 61, pp. 80–88.

⁵Vladimir V. Gusev (2013). "Lower bounds for the length of reset words in Eulerian automata". In: *Internat. J. Found. Comput. Sci.* 24.2, pp. 251–262.

$p_{NZ_2}(n)$ and $hp_{NZ_1}(n)$

► [Blondel-Jungers-Olshevsky⁴, 2015]

$$\frac{n^2}{2} \le p_{NZ_2}(n) \le \frac{n^3 + 2n - 3}{3}$$

▶ [Gusev⁵, 2013; Wu-Z., 2022+]

$$(n-1)^2 \leq \operatorname{hp}_{\operatorname{NZ}_1}(n) \leq 2\operatorname{c}(n) + \left\lfloor \frac{(n+1)^2}{4} \right\rfloor = O(n^3)$$

⁴Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky (2015). "On primitivity of sets of matrices". In: *Automatica J. IFAC* 61, pp. 80–88.

⁵Vladimir V. Gusev (2013). "Lower bounds for the length of reset words in Eulerian automata". In: *Internat. J. Found. Comput. Sci.* 24.2, pp. 251–262.

Synchronizing automata

- A square (0,1)-matrix is called an automaton matrix if each row of A contains a unique 1.
- An *n*-state **automaton** is a tuple of *n*-by-*n* automaton matrices.
- An automaton A is synchronizing if there exists a product A_α which contains a positive column.
- The minimum length of such products is called **synchronizing index** of A.

Define the **Černý function** c(n) as the maximum synchronizing index of all synchronizing automata with *n* states.

Conjecture (Černý, 1971⁶) $c(n) = (n - 1)^2$.

⁶Ján Černý, Alica Pirická, and Blanka Rosenauerová (1971). "On directable automata". In: *Kybernetika (Prague)* 7, pp. 289–298. ISSN: 0023-5954.

In 1964, Černý⁷ found a family of automata $\{C_n\}$ such that C_n is an *n*-state synchronizing automaton whose synchronizing index equals $(n-1)^2$. This shows that

 $(n-1)^2 \leq \mathsf{c}(n).$

⁷Ján Černý (1964). "A remark on homogeneous experiments with finite automata". In: *Mat.-Fyz. Časopis. Sloven. Akad. Vied.* 14. (Slovak. English summary), pp. 208–216. ISSN: 0543-0046.

Some progresses on Černý Conjecture, Cont'd

There are some upper bounds of c(n) which roughly equals $O(\frac{n^3}{6})$.

⁸P. Frankl (1982). "An extremal problem for two families of sets". In: *European J. Combin.* 3.2, pp. 125–127.

⁹J.-E. Pin (1983). "On two combinatorial problems arising from automata theory". In: *Combinatorial mathematics (Marseille-Luminy, 1981)*. Vol. 75. North-Holland Math. Stud. Pp. 535–548.

¹⁰Marek Szykuła (2018). "Improving the upper bound and the length of the shortest reset words".
 In: vol. 96. LIPIcs. Leibniz Int. Proc. Inform. Art. No. 56, 13.

¹¹Y. Shitov (2019). "An improvement to a recent upper bound for synchronizing words of finite automata". In: *Journal of Automata, Languages and Combinatorics* 24, pp. 367–373.

Connection between Hurwitz primitive NZ $_1$ -matrix tuples and Synchronizing Automata

Let \mathcal{A} be an Hurwitz primitive tuple of *n*-by-*n* NZ₁-matrix. Without loss of generality, we can assume matrices in \mathcal{A} are (0, 1)-matrices.

$$\blacktriangleright \mathcal{B} \doteq \mathcal{A} \cup \{A_i A_j + A_j A_i : A_i, A_j \in \mathcal{A}\}$$

▶
$$C \doteq \{C : C \le B \in B \text{ and } C \text{ is an automaton matrix}\}.$$

Observation (Wu-Z., 2022+)

The automaton C is synchronizing.

• Regard $\mathcal{A} = (A_1, \dots, A_m)$ as an arc-labeled digraph D, where V(D) = [n] and $E(D) = \{x \xrightarrow{k} y : A_k(x, y) > 0\}.$

- ▶ Regard $\mathcal{A} = (A_1, ..., A_m)$ as an arc-labeled digraph D, where V(D) = [n] and $E(D) = \{x \xrightarrow{k} y : A_k(x, y) > 0\}.$
- Find a positive Hurwitz product of A ⇔ find τ ∈ N^m such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type-τ.

- ▶ Regard $\mathcal{A} = (A_1, ..., A_m)$ as an arc-labeled digraph D, where V(D) = [n] and $E(D) = \{x \xrightarrow{k} y : A_k(x, y) > 0\}.$
- Find a positive Hurwitz product of A ⇔ find τ ∈ N^m such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type-τ.
- By the observation in the last slides, there exists τ' ∈ N^m and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type-τ' and |τ'| ≤ 2 c(n).

- ▶ Regard $\mathcal{A} = (A_1, ..., A_m)$ as an arc-labeled digraph D, where V(D) = [n] and $E(D) = \{x \xrightarrow{k} y : A_k(x, y) > 0\}.$
- Find a positive Hurwitz product of A ⇔ find τ ∈ N^m such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type-τ.
- By the observation in the last slides, there exists τ' ∈ N^m and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type-τ' and |τ'| ≤ 2 c(n).
- Since the digraph *D* is strongly connected, there exists a closed walk *W* which visits every vertex and has length at most $\left|\frac{(n+1)^2}{4}\right|$.

- ▶ Regard $\mathcal{A} = (A_1, ..., A_m)$ as an arc-labeled digraph D, where V(D) = [n] and $E(D) = \{x \xrightarrow{k} y : A_k(x, y) > 0\}.$
- Find a positive Hurwitz product of A ⇔ find τ ∈ N^m such that for all vertices x and y there exists a walk from x to y such that the arc-label sequence of this walk is type-τ.
- By the observation in the last slides, there exists τ' ∈ N^m and a vertex z such that for each vertex x there exists a walk from x to z satisfying the arc-label sequence of this walk is type-τ' and |τ'| ≤ 2 c(n).
- Since the digraph *D* is strongly connected, there exists a closed walk *W* which visits every vertex and has length at most $\left|\frac{(n+1)^2}{4}\right|$.
- For all vertices x and y, we "connect" W and one of τ'-walks in a proper way to construct a walk from x to y.

Summary

	Primitive		Hurwitz Primitive	
Assumption		NZ_2		NZ_1
Determine problem	NP-hard	$O(n^2m)$?	$O(n^2m^2+n^3m)$
Finding such	NP-hard	$O(n^3m)$	7	$O(n^3m^2)$
a product	NI -nard	0(11 111)	•	0(11 111)
Finding such a	NP-hard	NP-hard	7	7
shortest product		NI -naro	•	•
Lower bounds	$2^{\frac{n}{2}(1-\epsilon)}$	n^2	Cn^{m+1}	$(n-1)^2 + 1$
of indices	J 3、 /	2	CII	(n-1) + 1
Upper bounds	$2^{\frac{n}{2}(1+\epsilon)}$	$O(n^3)$	$m m^{m+1} \perp n^2$	$O(n^3)$
of indices	J 3、)	O(n)	m:mm + n	$O(n^{\prime})$

Summary

	Primitive		Hurwitz Primitive	
Assumption		NZ_2		NZ_1
Determine problem	NP-hard	$O(n^2m)$?	$O(n^2m^2+n^3m)$
Finding such	NP-hard	<i>O</i> (<i>n</i> ³ <i>m</i>)	?	$O(n^{3}m^{2})$
Finding such a shortest product	NP-hard	NP-hard	?	?
Lower bounds of indices	$3^{\frac{n}{3}(1-\epsilon)}$	$\frac{n^2}{2}$	Cn ^{m+1}	$(n-1)^2 + 1$
Upper bounds of indices	$3^{\frac{n}{3}(1+\epsilon)}$	<i>O</i> (<i>n</i> ³)	$m!mn^{m+1} + n^2$	<i>O</i> (<i>n</i> ³)

THANK YOU FOR YOUR ATTENTION