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Primitivity

A nonnegative n-by-n matrix A is called primitive if Ak > 0 (entrywise) for some
k ≥ 0.

There are several possibilities to generalize the concept “primitivity” from a
nonnegative matrix (Markov process) to a tuple of nonnegative matrices.

Today, we focus on two generalizations:

I primitivity (inhomogeneous Markov process)

I Hurwitz primitivity (multi-dimensional Markov process)

If a process is (Hurwitz) primitive, it has some nice asymptotic behavior.
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Primitive matrix tuples

Let A = (A1, . . . ,Am) be an m-tuple of nonnegative n-by-n matrices. For each finite
sequence α = α1 · · ·αk over [m] = {1, 2 . . . ,m}, write Aα for Aα1 · · ·Aαk

and call it a
product over A of length k.

I The m-tuple A is called primitive if there exists a finite sequence α over [m] such
that

Aα > 0.

I The minimum length of positive products over A is called the primitive index of
A.
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Types of sequences

Let α = α1 · · ·αk be a sequence over a set X .

I For any x ∈ X , we denote the number of occurrences of x in the word α by |α|x ,
that is

|α|x = |{i ∈ [k] : αi = x}|.

I The type of α, denoted by t(α), is the vector in NX such that

t(α)(x) = |α|x

for each x ∈ X .

Example

The type of the sequence α = 1442112 over {1, 2, 3, 4} is

t(α) = (3, 2, 0, 2).
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Hurwitz products and Hurwitz primitivity

Let A = (A1, . . . ,Am) an m-tuple of nonnegative n-by-n matrices. For each
τ = (τ1, . . . , τm) ∈ Nm, let

Aτ =
∑

α: t(α)=τ

Aα .

We call Aτ a Hurwitz product of A of length |τ | :=
∑m

i=1 τi .

I The tuple A is Hurwitz primitive if it owns a positive Hurwitz product.

I The minimum length of positive Hurwitz products is called the Hurwitz primitive
index of A.

Example

I A = (A1,A2,A3).

I A(1,3,0) = A1A
3
2 + A2A1A

2
2 + A2

2A1A2 + A3
2A1.
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Problems

I For a matrix tuple, how to determine whether it is (Hurwitz) primitive or not?

I For a (Hurwitz) primitive matrix tuple, how to find a positive (Hurwitz) product
of it?

I What is the maximum (Hurwitz) primitive index of all (Hurwitz) primitive
m-tuples of n-by-n nonnegative matrices?

5 / 21



Determine Problems

I [Gerencsér-Gusev-Jungers1, 2018] The determine problem of primitivity is NP-hard
(even for two matrices).

I The algorithmic complexity of determining Hurwitz primitivity is still unknown.

1Balázs Gerencsér, Vladimir V. Gusev, and Raphaël M. Jungers (2018). “Primitive sets of
nonnegative matrices and synchronizing automata”. In: SIAM J. Matrix Anal. Appl. 39.1, pp. 83–98.
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Two subfamilies of square matrices

I The set of nonnegative n-by-n matrices that has no zero rows is denoted by
NZ1(n). (row-stochastic matrix)

I The set of nonnegative n-by-n matrices that has no zero rows and no zero
columns is denoted by NZ2(n). (doubly-stochastic matrix)
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Block permutation matrices

Let A be an n-by-n matrix. Let π = (π1, . . . , πr ) be a partition of [n]. We say that A
preserves the partition π if there exists a permutation σ ∈ Symr such that
A(πi , πj) = 0 whenever j 6= σ(i).
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Two characterization theorems

I A tuple of nonnegative matrices A is irreducible if
∑

A∈A A is irreducible.

I A partition is trivial if it contains at least two parts.

Theorem (Protasov-Voynov2, 2012)

Let A be an irreducible tuple of NZ2-matrices. The tuple A is not primitive if and only
if there exists a non-trivial partition π such that every matrix in A preserves π.

Theorem (Protasov3, 2013)

Let A be an irreducible tuple of NZ1-matrices. The tuple A is not Hurwitz primitive if
and only if there exists a non-trivial partition π such that every matrix in A preserves π
and all these permutations corresponding to members of A commute with each other.

2V.Yu. Protasov and A.S. Voynov (2012). “Sets of nonnegative matrices without positive
products”. In: Linear Algebra and its Applications 437.3, pp. 749–765.

3V.Yu. Protasov (2013). “Classification of k-primitive sets of matrices”. In: SIAM J. Matrix Anal.
34.3, pp. 1174–1188.
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Different proofs

Characterization theorem of primitive matrices in NZ2(n):

I Protasov-Voynov (2012) give the first proof by using geometrical properties of
affine operators on polyhedra.

I Three combinatorial proofs are found by Al’pin-Alpina (2013),
Blondel-Jungers-Olshevsky (2015), and Al’pin-Alpina (2019).

I Using analytic method, Protasov (2021) gives a new proof.

Characterization theorem of Hurwitz primitive matrices in NZ1(n):

I The only proof so far is reported by Protasov (2013), which is based on some
earlier work of Olesky-Shader-Driessche (2002).

We will present a sketch of a unified proof of these two characterization theorems.
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A sketch of the proof (primitive)
Let A be a m-tuple of nonnegative n-by-n NZ2-matrices.
Define ≈ to be the binary relation on [n] such that i ≈ j if for all i ′, j ′ ∈ [n] and for all
finite sequence α over [m] satisfying

Aα(i , i ′) > 0 and Aα(j , j ′) > 0,

there exists k ∈ [n] and a sequence β such that

Aβ(i ′, k) > 0 and Aβ(j ′, k) > 0.

The relation ≈ is called the stable relation of A.

It is routine to verify the following
statements.

I The relation ≈ is an equivalence relation.

I Let π be the partition which is formed by the equivalence class of ≈. The
matrices in A preserve π.

I The partition π is the unique minimal (finest) partition of [n] such that all
matrices in A preserve it.
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A sketch of the proof (Hurwitz primitive)
Let A be a m-tuple of nonnegative n-by-n NZ1-matrices.

Define
h
≈ to be the binary relation on [n] such that i

h
≈ j if for all i ′, j ′ ∈ [n] and for all

vector τ ∈ Nm satisfying

Aτ (i , i ′) > 0 and Aτ (j , j ′) > 0,

there exists k ∈ [n] and a vector β ∈ Nm such that

Aγ(i ′, k) > 0 and Aγ(j ′, k) > 0.

The relation
h
≈ is called the Hurwitz stable relation of A. It is routine to verify the

following statements.

I The relation
h
≈ is an equivalence relation.

I Let π be the partition which is formed by the equivalence class of
h
≈. The

matrices in A preserve π.
I The partition π is the unique minimal (finest) partition of [n] such that all

matrices in A preserve π and all these permutations corresponding to members of
A commute with each other.

12 / 21



Maximum (Hurwitz) primitive index

Let X be a subfamily of nonnegative matrices.

I pX (n)
.

= the maximum primitive index of all primitive tuples of n-by-n X -matrices;

I hpX (n)
.

= the maximum Hurwitz primitive index of all Hurwitz primitive tuples of
n-by-n X -matrices.

We will present some results on pNZ2
(n) and hpNZ1

(n).
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pNZ2
(n) and hpNZ1

(n)

I [Blondel-Jungers-Olshevsky4, 2015]

n2

2
≤ pNZ2

(n) ≤ n3 + 2n − 3

3

I [Gusev5, 2013]
(n − 1)2 ≤ hpNZ1

(n)

4Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky (2015). “On primitivity of sets of
matrices”. In: Automatica J. IFAC 61, pp. 80–88.

5Vladimir V. Gusev (2013). “Lower bounds for the length of reset words in Eulerian automata”. In:
Internat. J. Found. Comput. Sci. 24.2, pp. 251–262.
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pNZ2
(n) and hpNZ1

(n)

I [Blondel-Jungers-Olshevsky4, 2015]

n2

2
≤ pNZ2

(n) ≤ n3 + 2n − 3

3

I [Gusev5, 2013; Wu-Z., 2022+]

(n − 1)2 ≤ hpNZ1
(n) ≤ 2 c(n) +

⌊
(n + 1)2

4

⌋
= O(n3)

4Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky (2015). “On primitivity of sets of
matrices”. In: Automatica J. IFAC 61, pp. 80–88.

5Vladimir V. Gusev (2013). “Lower bounds for the length of reset words in Eulerian automata”. In:
Internat. J. Found. Comput. Sci. 24.2, pp. 251–262.

14 / 21



Synchronizing automata

I A square (0, 1)-matrix is called an automaton matrix if each row of A contains a
unique 1.

I An n-state automaton is a tuple of n-by-n automaton matrices.

I An automaton A is synchronizing if there exists a product Aα which contains a
positive column.

I The minimum length of such products is called synchronizing index of A.
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Černý Conjecture

Define the Černý function c(n) as the maximum synchronizing index of all
synchronizing automata with n states.

Conjecture (Černý, 19716)

c(n) = (n − 1)2.

6Ján Černý, Alica Pirická, and Blanka Rosenauerová (1971). “On directable automata”. In:
Kybernetika (Prague) 7, pp. 289–298. issn: 0023-5954.
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Some progresses on Černý Conjecture

In 1964, Černý7 found a family of automata {Cn} such that Cn is an n-state
synchronizing automaton whose synchronizing index equals (n − 1)2. This shows that

(n − 1)2 ≤ c(n).

7Ján Černý (1964). “A remark on homogeneous experiments with finite automata”. In: Mat.-Fyz.
Časopis. Sloven. Akad. Vied. 14. (Slovak. English summary), pp. 208–216. issn: 0543-0046.
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Some progresses on Černý Conjecture, Cont’d

There are some upper bounds of c(n) which roughly equals O(n
3

6 ).

I [Frankl8-Pin9 1982] c(n) ≤ n3−n
6 ≤ O(0.16667n3)

I [Szyku la10 2018] c(n) ≤ 85059n3+90024n2+196504n−10648
511104 ≤ O(0.16643n3)

I [Shitov11 2019] c(n) ≤
(

7
48 + 15625

798768

)
n3 + o(n2) ≤ O(0.16540n3)

8P. Frankl (1982). “An extremal problem for two families of sets”. In: European J. Combin. 3.2,
pp. 125–127.

9J.-E. Pin (1983). “On two combinatorial problems arising from automata theory”. In:
Combinatorial mathematics (Marseille-Luminy, 1981). Vol. 75. North-Holland Math. Stud.
Pp. 535–548.

10Marek Szyku la (2018). “Improving the upper bound and the length of the shortest reset words”.
In: vol. 96. LIPIcs. Leibniz Int. Proc. Inform. Art. No. 56, 13.

11Y. Shitov (2019). “An improvement to a recent upper bound for synchronizing words of finite
automata”. In: Journal of Automata, Languages and Combinatorics 24, pp. 367–373.

18 / 21



Connection between Hurwitz primitive NZ1-matrix tuples and
Synchronizing Automata

Let A be an Hurwitz primitive tuple of n-by-n NZ1-matrix. Without loss of genernality,
we can assume matrices in A are (0, 1)-matrices.

I B .
= A∪{AiAj + AjAi : Ai ,Aj ∈ A}.

I C .
= {C : C ≤ B ∈ B and C is an automaton matrix}.

Observation (Wu-Z., 2022+)

The automaton C is synchronizing.
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Proof of the upper bound of hpNZ1
(n)

I Regard A = (A1, . . . ,Am) as an arc-labeled digraph D, where V (D) = [n] and

E (D) = {x k−→ y : Ak(x , y) > 0}.

I Find a positive Hurwitz product of A ⇔ find τ ∈ Nm such that for all vertices x
and y there exists a walk from x to y such that the arc-label sequence of this
walk is type-τ .

I By the observation in the last slides, there exists τ ′ ∈ Nm and a vertex z such that
for each vertex x there exists a walk from x to z satisfying the arc-label sequence
of this walk is type-τ ′ and |τ ′| ≤ 2 c(n).

I Since the digraph D is strongly connected, there exists a closed walk W which

visits every vertex and has length at most
⌊
(n+1)2

4

⌋
.

I For all vertices x and y , we “connect” W and one of τ ′-walks in a proper way to
construct a walk from x to y .
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Summary

Primitive Hurwitz Primitive
Assumption NZ2 NZ1

Determine problem NP-hard O(n2m) ? O(n2m2 + n3m)
Finding such
a product

NP-hard O(n3m) ? O(n3m2)

Finding such a
shortest product

NP-hard NP-hard ? ?

Lower bounds
of indices

3
n
3 (1−ε) n2

2 Cnm+1 (n − 1)2 + 1

Upper bounds
of indices

3
n
3 (1+ε) O(n3) m!mnm+1 + n2 O(n3)

THANK YOU FOR YOUR ATTENTION
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