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Higher order inhomogenous DDS

Let r be a positive integer. Let S be a set and let ¥ be a
collection of #-variable maps from S’ to S. The pair (S, ) is
called an order-7 discrete dynamical system (¢-DDS).

» initial states: x = (x1,x2,...,x,) € §;

» dynamical mechanism: F = (fi,f»,...) € F;

» a trajectory determined by (x, F): X = (x1,x2,...) € SY,

where
Xigr = fi(Xis Xig1s - o o » Xigr—1), VI € N
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Higher order inhomogenous DDS

Let r be a positive integer. Let S be a set and let ¥ be a
collection of #-variable maps from S’ to S. The pair (S, ) is
called an order-7 discrete dynamical system (¢-DDS).

» initial states: x = (x1,x2,...,x,) € §;
» dynamical mechanism: F = (fi,f»,...) € F;
» a trajectory determined by (x, F): X = (x1,x2,...) € SY,
where
Xivr = fi(Xi, Xig15 - - - Xigr—1), VI €N
The phase space of (S, ¥) is an arc-labelled digraph with
» vertex set S';

» arc set {(xl,...,xt)i (X2, s X f(X1, o x) s X €S, f € F

and will be denoted by £S#. One-sided infinite walks in the
phase space are just all trajectories in (S, F).



Morkov operator

Let r € N and K be a finite set. Write Setx := 2K\ {0}. Let f be a
map from K’ to Setk. It can be graphically represented by its De
Bruijn form Iy, a digraph with vertex set K’ and arc set

{1y ooy x) = (00,0 o oy Xeg1) 2 X1 €L, -0 X))
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Morkov operator

Let r € N and K be a finite set. Write Setx := 2K\ {0}. Let f be a
map from K’ to Setk. It can be graphically represented by its De
Bruijn form Iy, a digraph with vertex set K’ and arc set

{1y ooy x) = (00,0 o oy Xeg1) 2 X1 €L, -0 X))

The map f induces a map M, from Set}, to Setk, called the
Morkov operator associated to f, such that

MiAn...A) = | ) fo.
XEA| X+ XAy

Let ¥ be a finite collection of maps from K’ to Setx. We define
Mg to be the multi-set {My : f € F7}.



Example

t=2,K={1,2} 2} x {2}

'
{2} x {1}

'
12 ,\ {1} x{2} <— K x {1}
'
> 11D 2)x K ~— K x{2)

!

\‘21 KxK ~— {1} XK «~— {1} x {1}

t

Iy PSw,

Figure: The De Bruijn form I'y and the phase space PSy,.



(t,r,k)-EBDDS

Lett,r,k € N. Let K be a set of size k and let ¥ be a collection
of r maps from K’ to Setx. The pair (Setx, M#) is called a
(1, r, k)-essential Boolean-linear discrete dynamincal systems

or, simply, a (¢, r, k)-EBDDS.

Convention:
» In the case that 7 = {f}, we write (Setg, My) for (Setx, M«).
» Fora=(ay,...,a) € K', we write {a} for {a;} x - - - X {a;}.



v

Cerny automata as a (1, 2, k)-EBDDS
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Cerny Conjecture

Let r,k € N. Let K be a set of size k and let ¥ be a set of r
maps from K to Setg.

If every element from ¥ is indeed a map from K to (’f) and
there exists a walk from K to a singleton set in Sy, we call
the (1, r, k)-EBDDS (Setgx, M#) a synchronizing automaton.



Cerny Conjecture

Let r,k € N. Let K be a set of size k and let ¥ be a set of r
maps from K to Setg.

If every element from ¥ is indeed a map from K to (’f) and
there exists a walk from K to a singleton set in Sy, we call
the (1, r, k)-EBDDS (Setgx, M#) a synchronizing automaton.

Conjecture (Cerny, 1964)

Let (Setx, M#) be a synchronizing (1, r,k)-EBDDS. Then there
exists a walk W from K to a singleton set in PSw, with length at
most (k — 1)



Primitive exponent

A (¢, r,k)-EBDDS (Setgx, M#) is primitive if every long enough
walk in PS8y, ends at K'.

For a primitive (¢, r, k)-EBDDS (Setx, M#), the primitive exponent
is the minimum non-negative integer T such that every length-T
walk in PSy;,. ends at K’, which we denote by g(Setg, My).

We use y(t, r, k) to denote the maximum number in the set

{g(Setx, M) : (Setg, Mg) is a primitive (¢, r, k)-EBDDS}.

23



Maximum primitive exponents of (1, r, k)-EBDDS
Theorem (Wielandt, 1959)

k—=1)2+1, ifk=>2;

1,1,k) =
4 ) {(k—l)Z:O, ifk=1.
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Maximum primitive exponents of (1, r, k)-EBDDS
Theorem (Wielandt, 1959)

k—=1)2+1, ifk=>2;

1,1,k) =
4 ) {(k—l)Z:O, ifk=1.

Let r(k) be minimum positive integer r such that

y(1,r k) =2F-2.

Theorem (Cohen, Sellers, 1982)

y(1,2F =2, k) =2k -2,

namely,
g rk) < 2% = 2.
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Maximum primitive exponents of (1, r, k)-EBDDS,
contd

Theorem (Wu, Z., 2015)

y(1,k k) = 2K -2,

or, equivalently,

r(k) < k.
Note that
y(1,1,k) < y(1,2,k) < -+
<y(1,rk) - 1,k) < y(1, r(k), k) = y(1,r(k) + 1,k) = --- = 2k = 2.

Question
Does it hold that y(1,i,k) < y(1,i + 1,k) foralli € [1, r(k) — 1]1?

10/23



In the spirit of Cerny

Conjecture (Wu, Xu, Z., 2016)

Let (Setx, M#) be a primitive (1, r, k)-EBDDS. For any
A, B € Setg, it holds

DISTps,, (A, B) < |BIK'

as long as A can reach B in PSSy .

Remark
If this conjecture is correct, then for every k > 2 we can obtain
log,(2F -2
o > 1282 —2y
log, k
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Maximum primitive exponents of (¢, 1, k)-EBDDS

> y2,1,1) = 1.
» v(2,1,2) =1.
> y(2,1,3) = 23.

Theorem (Wu, Xu, Z., 2016+)

Fork > 4,
y(2,1,k) > 2k — 1)> + 1. (1)
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Maximum primitive exponents of (¢, 1, k)-EBDDS

> y2,1,1) = 1.
> y(2,1,2) = 7.
> y(2,1,3) = 23.

Theorem (Wu, Xu, Z., 2016+)
Fork > 4,
y(2,1,k) > 2k — 1)> + 1. (1)

Conjecture (Wu, Xu, Z., 2016+)
Equality holds in (1) for all k > 4.
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Maximum primitive exponents of (¢, 1, k)-EBDDS

> y2,1,1) = 1.
> y(2,1,2) = 7.
> y(2,1,3) = 23.

Theorem (Wu, Xu, Z., 2016+)
Fork > 4,
y(2,1,k) > 2k — 1)> + 1. (1)

Conjecture (Wu, Xu, Z., 2016+)
Equality holds in (1) for all k > 4.

Theorem (Chen, Wu, 2016+)
K <y(t,1,k) <ttk— 1)K = 1)+ 1.

12/23



Strong connectivity of (¢, 1, k)-EBDDS

Let (Setx,My) be a (1, 1, k)-EBDDS.

For a,b € K', we define RI(a,b) to be the set
{i=0: beMah)

and call it the set of reachable indices of f from a to b.

We call (Setx, My) strongly connected if R7¢(a,b) # 0 for all
a,bek'.

13/23



Diameter of (¢, 1, k)-EBDDS

Let (Setx, My) be a strongly connected (z, 1, k)-EBDDS.
For all a, b € K, we define the distance from a to b:

DISTy(a,b) = min{i : i € RTf(a.b)}.
The diameter of (Setx, My):
DIA(f) = max {DISTy(a,b) : a,b € K'}.
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Diameter of (¢, 1, k)-EBDDS

Let (Setx, My) be a strongly connected (z, 1, k)-EBDDS.
For all a, b € K, we define the distance from a to b:

DISTy(a,b) = min{i : i € RTf(a.b)}.
The diameter of (Setx, My):
DIA(f) = max {DISTy(a,b) : a,b € K'}.
Note that DIA(f) may be larger than k’ when ¢ > 2.

0 TN DIA(f) = DIST/((2,2),(3,3)) = 15 > 3.
Zé ;1 33 X =25HE25 626 B AL 20,41, 23,
\ / {351, 25 {11, {2, 3}, {1, 2}, {1, 3},{1,2,3} - - -)
32 13
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Maximum diameter of (z, 1, k)-EBDDS

> Df,k =
max {DIA(f) : (Setg, My) is a strongly connected (z, 1, k)—EBDDS}.
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Maximum diameter of (z, 1, k)-EBDDS

> Df,k =
max {DIA(f) : (Setx, My) is a strongly connected (z, 1, k)—EBDDS}.

> Dz,z =4 and D2’3 = 15.

Theorem (Wu, Xu, Z., 2016+)
Fork > 5,
2k2, if k is odd,
Doy = o
’ 2k —k+1, ifkiseven.

Conjecture (Wu, Xu, Z., 2016+)

D
lim —X = 2.
k—o0 k2
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Cyclic classes

Let (Setx, My) be a strongly connected (z, 1, k)-EBDDS. We say
a,b € K' are equivalent in the relation ~y;, if there exists N > 0
such that

My (fa}) = M ({B}).

Let C; := K’/ ~v,. Each equivalent class of ~, is called a cyclic
class of (Setx, My). We define the period of (Setx, My) to be the
number of equivalent classes and denote it by per(f).

16/23



Cyclic classes, Contd

Theorem (Wu, Xu, Z., 2016+)

Let (Setg, My) be a strongly connected (t, 1, k)-EBDDS. Then the
following hold:

(i) per(f) = ged(RIy(a,a)) foralla € K'.
(i) LetM; : C; — Cy such that

M¢([a]) = [b],

where b € M¢({a}) and a, be K'. Then the transformation
semigroup generated by My is the cyclic group Zyery).

17/23



Cyclic classes, Contd

Theorem (Wu, Xu, Z., 2016+)

Let (Setg, My) be a strongly connected (t, 1, k)-EBDDS. Then the
following hold:

(i) per(f) = ged(RIy(a,a)) foralla € K'.
(i) LetM; : C; — Cy such that

M¢([a]) = [b],

where b € M¢({a}) and a, be K'. Then the transformation
semigroup generated by My is the cyclic group Zyery).

Theorem (Wu, Xu, Z., 2016+)
Let (Setx, My) be a (t,1,k)-EBDDS. Then (Setg, My) is primitive if
and only if (Setg, My) is strongly connected and has period one.
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Sets of periods

Let (¢, k) be the set of positive integers which can be the
period of a strongly connected (7, 1, k)-EBDDS and let

Pt) = Uken P(1, k).
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Sets of periods
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Sets of periods

Let (¢, k) be the set of positive integers which can be the

period of a strongly connected (7, 1, k)-EBDDS and let

P(1) = Uren P2, k).

» P(1) =N 2 P(2) =N\{2,3,5,6,7} 2 P(3).
» Forany ¢t € N, we have |[N\ P(7)| < co.

r=1

t=2

t=3

t=4

P) N[1,2t+ 3]

[1,2f+ 3]

{1, 21}

{1,2¢ + 2}

{1,21}
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Sets of periods

Let (¢, k) be the set of positive integers which can be the

period of a strongly connected (7, 1, k)-EBDDS and let

Pt) = Uken P(1, k).

» P(1) =N 2 P(2) =N\{2,3,5,6,7} 2 P(3).
» Forany ¢t € N, we have |[N\ P(7)| < co.

r=1

t=2

t=3

t=4

P) N[1,2t+ 3]

[1,2f+ 3]

{1, 21}

{1,2¢ + 2}

{1,21}

Conjecture (Wu, Xu, Z., 2016+)

PL)2P2)2P0C) 2 -
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Cyclic decomposition

Let 1,k,p € N and K be a set of size k.

Let ® be a map from Z, to Setk.

Let C; :=D@) x---x P +t—1)forallieZ,.

We call @ a cyclic decomposition of (K', r) with period per(®) = p
if {Ci}iez, form a partition of K.

T
Cr =02)xP(3) € =D(1)xD(2)

Ee}

C3=03)xD4) C4=04)xD(1)
~_
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Cyclic decomposition

Let 1,k,p € N and K be a set of size k.

Let ® be a map from Z, to Setk.

Let C; :=D@) x---x P +t—1)forallieZ,.

We call @ a cyclic decomposition of (K', r) with period per(®) = p
if {Ci}iez, form a partition of K.

VS
C, =D2)xDB) € = (1) x DQ2)

Ee}

C3=03)xD4) C4=04)xD(1)
~_

Theorem (Wu, Xu, Z., 2016+)

For any positive integer p, p € P(t, k) if and only if there exists a
cyclic decomposition ® of (K', r) with |K| = k and per(®) = p.
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Examples of cyclic decomposition

» De Bruijn sequences
» An example from Bill Martin

28 2RUENES Lida) % 4 oy

| 22 N 343 286, o
7 A% E R O
T 7\ [RE) =
w1390 e 20 ) b7z Bl e
Cy " 3| s8] /0 o
19|50k b & &
s ) ° Sl
s i ,_’150/5’5173 7
APYZL] & B 072 Wl N
: ,,\ 19 & Al
T Moley 122 LW )
1" 16 129] 57 or, 5 I
1
1 7 RGeS “Efzﬁ' L Yoo G -
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A question

Question

Lett, k,p be three positive integers and let K be a set of size k.
What is the number of different cyclic decompositions of (K', t)
with period p?
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A conjecture on expansion property

Conjecture (Wu, Xu, Z., 2016)

Let k be an integer larger than 3. Let A be a k x k primitive
Boolean matrix with primitive exponent p. Let o(A) be the
number of entries of A which equals 1.

» Ifo(A) > k*> — 4k + 7, then
o(A) < 7(A%) < --- < o(AP) = K°.
» Ifo(A) > k* - 5k + 10, then

o(A) < (A < - < o (AP) = K.

22/23



THANK YOU!
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