Phase spaces and kernel spaces of transformation semigroups

Yinfeng Zhu

Shanghai Jiao Tong University

August 18, 2018

@ NSU

Permutation groups

Let Ω be a finite set.

- The symmetric group on Ω, written Sym(Ω), is the set of all permutations of Ω.
- A permutation group on Ω is a subgroup of Sym (Ω) .

Livingstone and Wagner theorem

Let Ω be a finite set. Let G be a permutation group on Ω .

- $\binom{\Omega}{k} := \{k \text{-element subsets of } \Omega\}.$
- G induces a permutation group G_k on $\binom{\Omega}{k}$.
- G is k-homogeneous if G_k is transitive.

Theorem (Livingstone-Wagner, 1965) If $k \le \ell$ and $k + \ell \le |\Omega|$, then

#orbits of $G_k \leq$ #orbits of G_ℓ .

In particular,

$$\ell$$
-homogeneous \Rightarrow k-homogeneous.

Transformation semigroup

Let Ω be a finite set.

- The full transformation monoid on Ω, written T(Ω), is the set of all maps from Ω to Ω.
- A transformation semigroup on Ω is a sub-semigroup of $T(\Omega)$.

Reachable digraphs

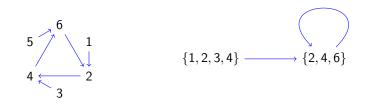
Let S be a transformation semigroup on Ω . Define the reachable digraph Γ_S of S to be the digraph with

- vertex set Ω;
- arc set $\{(x, s(x)) \mid x \in \Omega, s \in S\}$.

We call S transitive if Γ_S is strongly connected.

For a map $s: \Omega \to \Omega$, define

$$ar{s}: \ 2^\Omega \ o \ 2^\Omega \ X \ \mapsto \ \{s(x) \mid x \in X\}.$$



 \overline{s}

s

Let S be a transformation semigroup on Ω .

S induces a transformation semigroup $\overline{S} := \{\overline{s} \mid s \in S\}$ on 2^{Ω} . We call \overline{S} the phase space of S.

We call *S k*-homogeneous if for all $X, Y \in {\Omega \choose k}$ there exists $s \in S$ such that $\overline{s}(X) = Y$.

Phase space, II

G2 R2

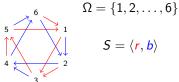
Let Γ be a digraph and $X \subseteq V_{\Gamma}$.

- $\Gamma[X] :=$ the induced subgraph of Γ on X.
- wcc(Γ) := {weakly connected compoent of Γ }.
- Theorem (Wu-Z.,2018+) If $k \le \ell$ and $k + \ell \le |\Omega|$, then

$$\#\operatorname{wcc}(\operatorname{\mathsf{F}}_{\overline{\mathfrak{5}}}[\binom{\Omega}{k}]) \leq \#\operatorname{wcc}(\operatorname{\mathsf{F}}_{\overline{\mathfrak{5}}}[\binom{\Omega}{\ell}]).$$

Moreover,

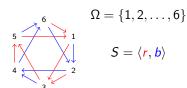
$$\ell$$
-homogeneous \Rightarrow k-homogeneous.

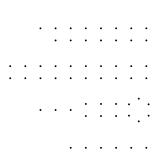


 $S = \langle \mathbf{r}, \mathbf{b} \rangle$

٠

٠





.

٠

$$\Omega = \{1, 2, \dots, 6\}$$

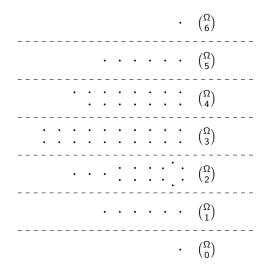
 $S = \langle r, b \rangle$

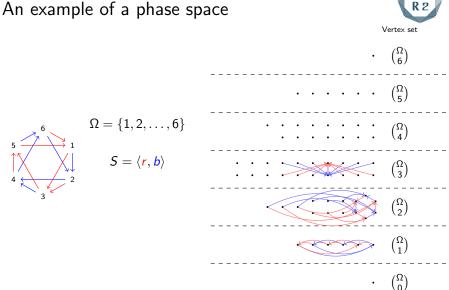
				•	•	•	•	•	•		
		•	•	•	•			•	•		
								•			
•	•	•	٠	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•	•		
								•			
								•			
					-	-	-				
				•	•	•	•	•	•		

9 of 20

 $\Omega = \{1, 2, \ldots, 6\}$

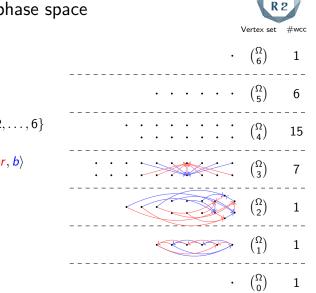
 $S = \langle \mathbf{r}, \mathbf{b} \rangle$

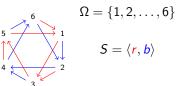




•

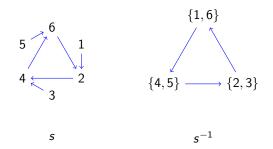
9 of 20





For a map $s: \Omega \to \Omega$, define

$$egin{array}{rcl} s^{-1}:&2^\Omega& o&2^\Omega\ &X&\mapsto&\{y\mid s(y)\in X\}. \end{array}$$

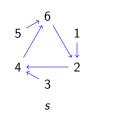


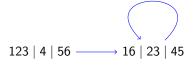
G2 R2

Kernel space, I

- $P(\Omega) := \{ \text{partitions of } \Omega \}.$
- $P_k(\Omega) := \{k \text{-part partitions of } \Omega\}.$
- For a map $s: \Omega \to \Omega$, define

$$\begin{array}{rcl} \tilde{s}: & \mathsf{P}(\Omega) & \to & \mathsf{P}(\Omega) \\ & \Pi & \mapsto & \{s^{-1}(\pi) \mid \pi \in \Pi\} \setminus \{\emptyset\}. \end{array}$$





ŝ

Kernel space, II

Let S be a transformation semigroup on Ω .

- S induces a transformation semigroup S̃ := {s̃ | s ∈ S} on P(Ω).
 We call S̃ the kernel space of S.
- S is k-kernel homogeneous if for all $\Pi, \Pi' \in \mathsf{P}_k(\Omega)$ there exists $s \in S$ such that $\tilde{s}(\Pi) = \Pi'$.

Theorem (Wu-Z.,2018+) If $k \le \ell \le \frac{|\Omega|}{2}$, then

$$\# \operatorname{wcc}(\operatorname{F}_{\tilde{\mathcal{S}}}[\binom{\Omega}{k}]) \leq \# \operatorname{wcc}(\operatorname{F}_{\tilde{\mathcal{S}}}[\binom{\Omega}{\ell}]).$$

Moreover,

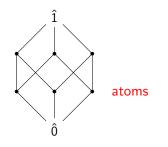
 ℓ -kernel homogeneous \Rightarrow k-kernel homogeneous.

Lattice

A lattice is a partially ordered set such that for every two elements x, y

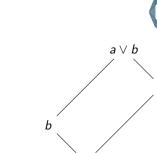
- (join) $x \lor y :=$ unique min $\{z \mid x \le z, y \le z\}$ and
- (meet) $x \wedge y :=$ unique max $\{z \mid z \le x, z \le y\}$ exists.

We say that x is covered by y if there is no z such that x < z < yand x < y, denoted by x < y.



Geometric lattice

- A geometric lattice is an atomistic semimodular lattice.
- atomistic: $\hat{1} = \bigvee \{ \text{atoms} \}$
- semimodular: $a \land b \lessdot b \Rightarrow a \lt a \lor b$.



 $a \wedge b$

а

Example

- Boolean lattice of Ω : 2^{Ω} with set-inclusion.
- Partition lattice of Ω : P(Ω) with refinement.
- Projective geometry on Fⁿ_q: the set of all subspaces of Fⁿ_q with set-inclusion.

Inclusion operator, I

Let L be a geometric lattice.

• The rank $r_L(x)$ of an element x in L is defined to be the common length of saturated chains from $\hat{0}$ to x.

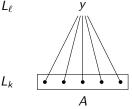
Given k and ℓ such that $k \leq \ell \leq r_L(\hat{1})$,

•
$$L_k := \{x \in L \mid r_L(x) = k\}.$$

Inclusion operator $\zeta_L^{k,\ell} : \mathbb{C}^{L_k} \to \mathbb{C}^{L_\ell}$ is a linear map such that

$$(\zeta_L^{k,\ell}(f))(y) = \sum_{x \in A} f(x)$$

for all $f \in \mathbb{C}^{L_k}$ and $y \in L_\ell$.



Inclusion operator, II

Let Ω be a finite set. Let k and ℓ be two positive integers with $k \leq \ell$.

Theorem If $k + \ell \leq |\Omega|$, then $\zeta_{2^{\Omega}}^{k,\ell}$ is injective.

Theorem (Kung, 1993) If $\ell \leq \frac{|\Omega|}{2}$, then $\zeta_{P(\Omega)}^{k,\ell}$ is injective.

Theorem (Kantor, 1974)

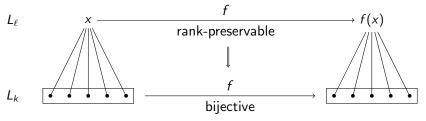
Let L be the projective geometry on \mathbb{F}_q^n . If $k + \ell \leq n$, then $\zeta_L^{k,\ell}$ is injective.

Conjecture (Kung, 1993)

Let L be a finite geometric lattice. If $\ell \leq \frac{|\Omega|}{2}$, then $\zeta_L^{k,\ell}$ is injective.

Hereditary endomorphism

Let *L* be a finite geometric lattice. We call $f \in \text{End}(L)$ an (ℓ, k) -hereditary endomorphism if $r_L(x) = r_L(f(x))$ ensures that *f* induces a bijection from $\{y \mid y \in L_k, y \leq x\}$ to $\{z \mid z \in L_k, z \leq f(x)\}.$



• every element in \overline{S} is (ℓ, k) -hereditary on 2^{Ω} ;

• every element in \tilde{S} is (ℓ, k) -hereditary on $P(\Omega)$.

Let L be a geometric lattice. Let k and ℓ be two positive integers. Let S be a transformation semigroup on L such that every map in S is an (ℓ, k) -hereditary endomorphism. If $\zeta_L^{k,\ell}$ is injective then

 $\# \operatorname{wcc}(\Gamma_{S}[L_{k}]) \leq \# \operatorname{wcc}(\Gamma_{S}[L_{\ell}]).$

Let L be a geometric lattice. Let k and ℓ be two positive integers. Let S be a transformation semigroup on L such that every map in S is an (ℓ, k) -hereditary endomorphism. If $\zeta_L^{k,\ell}$ is injective then

 $\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) \leq \# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_\ell]).$

Proof.

Let W ⊆ ℂ^{L_k} be the set of all functions which are constant on each weakly connected component of Γ_S[L_k].

Let L be a geometric lattice. Let k and ℓ be two positive integers. Let S be a transformation semigroup on L such that every map in S is an (ℓ, k) -hereditary endomorphism. If $\zeta_L^{k,\ell}$ is injective then

 $\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) \leq \# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_\ell]).$

Proof.

- Let W ⊆ C^{L_k} be the set of all functions which are constant on each weakly connected component of Γ_S[L_k].
- Let V ⊆ C^{L_ℓ} be the set of all functions which are constant on each weakly connected component of Γ_S[L_ℓ].

Let L be a geometric lattice. Let k and ℓ be two positive integers. Let S be a transformation semigroup on L such that every map in S is an (ℓ, k) -hereditary endomorphism. If $\zeta_L^{k,\ell}$ is injective then

 $\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) \leq \# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_\ell]).$

Proof.

- Let W ⊆ C^{L_k} be the set of all functions which are constant on each weakly connected component of Γ_S[L_k].
- Let V ⊆ C^{L_ℓ} be the set of all functions which are constant on each weakly connected component of Γ_S[L_ℓ].

•
$$\zeta_L^{k,\ell}(W) \subseteq V.$$

Let L be a geometric lattice. Let k and ℓ be two positive integers. Let S be a transformation semigroup on L such that every map in S is an (ℓ, k) -hereditary endomorphism. If $\zeta_L^{k,\ell}$ is injective then

 $\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) \leq \# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_\ell]).$

Proof.

- Let W ⊆ ℂ^{L_k} be the set of all functions which are constant on each weakly connected component of Γ_S[L_k].
- Let V ⊆ C^{L_ℓ} be the set of all functions which are constant on each weakly connected component of Γ_S[L_ℓ].

•
$$\zeta_L^{k,\ell}(W) \subseteq V.$$

 $\dim(W) \leq \dim(V)$

Let L be a geometric lattice. Let k and ℓ be two positive integers. Let S be a transformation semigroup on L such that every map in S is an (ℓ, k) -hereditary endomorphism. If $\zeta_L^{k,\ell}$ is injective then

 $\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) \leq \# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_\ell]).$

Proof.

- Let W ⊆ C^{L_k} be the set of all functions which are constant on each weakly connected component of Γ_S[L_k].
- Let V ⊆ C^{L_ℓ} be the set of all functions which are constant on each weakly connected component of Γ_S[L_ℓ].

•
$$\zeta_L^{k,\ell}(W) \subseteq V.$$

•
$$\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) = \dim(W) \leq \dim(V)$$

Let L be a geometric lattice. Let k and ℓ be two positive integers. Let S be a transformation semigroup on L such that every map in S is an (ℓ, k) -hereditary endomorphism. If $\zeta_L^{k,\ell}$ is injective then

 $\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) \leq \# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_\ell]).$

Proof.

- Let W ⊆ ℂ^{L_k} be the set of all functions which are constant on each weakly connected component of Γ_S[L_k].
- Let V ⊆ C^{L_ℓ} be the set of all functions which are constant on each weakly connected component of Γ_S[L_ℓ].

•
$$\zeta_L^{k,\ell}(W) \subseteq V.$$

• $\# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_k]) = \dim(W) \leq \dim(V) = \# \operatorname{wcc}(\Gamma_{\mathcal{S}}[L_\ell]).$

Two similar results

Let S be a transformation semigroup on Ω . Let A be a subset of Ω . The stabiliser permutation group of (S, A) is the permutation group $S_A := \{g|_A \mid g \in S, A\overline{g} = A\}$ on A.

Theorem (Wu-Z., 2018+)

Let $A \in {\Omega \choose k}$ and $B \in {\Omega \choose \ell}$. If $k + \ell \le |\Omega| - 1$ and $k \le \ell$ and S is $(\ell + 1)$ -homogeneous, then

#orbits of $S_A \leq$ #orbits of S_B .

Theorem (Wu-Z., 2018+)

Let L be the projective geometry on \mathbb{F}_q^n and $S \subseteq Mat_n(\mathbb{F}_q)$. If $k + \ell \leq n$ and $k \leq \ell$, then

$$\# \operatorname{wcc} \mathsf{\Gamma}_{\mathcal{S}}[L_k] \leq \# \operatorname{wcc} \mathsf{\Gamma}_{\mathcal{S}}[L_\ell].$$

Thank you

