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Abstract

For any positive integer t, a t-variable digraph on a set K is a map f from Kt to K. As a qualitative counterpart of going from
Markov chains to higher-order Markov chains, Wu, Xu and Zhu suggested in 2017 a study of t-variable digraphs, viewing usual
digraphs as 1-variable digraphs. Each strongly connected digraph has a period; this fact indeed extends to all strongly connected
t-variable digraphs. Let PS(t) denote the set of all periods of strongly connected t-variable digraphs, let g(t) be its Frobenius
number, namely the largest nonnegative integer that is not a member of PS(t), and let n(t) be its Sylvester number, namely the
number of positive integers outside of PS(t). We provide new estimates for g(t) and n(t). We also find that PS(t)∩ {1, 2, . . . , 4t− 1}
is {1, 8} and {1} when t ∈ {3, 4} and t ≥ 5, respectively.
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1. Introduction

Let K be a set. A digraph D with vertex set K can be thought of as the map f from K to 2K such that, for every
vertex v of D, f (v) is equal to the set of out-neighbors of v in D. Let t be a positive integer. One can then call any map
f from Kt to 2K a t-variable digraph on its vertex set V f

.
= K. Multivariate digraphs thus obtained, also referred to as

t-hydras, represent a generalization of hypergraphs and digraphs; see [WXZ17, p. 5]. Let f be a t-variable digraph
on K. We call f trivial provided f (v) = ∅ for all v ∈ Kt. The Markov operator of f , denoted by M f , is the map from
(2K)t to (2K)t such that M f (A1, . . . , At) =

(
A2, . . . , At,

⋃
(v1,...,vt)∈A1×···×At

f (v1, . . . , vt)
)

for all A1, . . . , At ⊆ K [WXZ17,
p. 4]. Note that Markov operators of t-variable digraphs are nothing but Boolean t-linear maps, which were proposed
by Wu, Xu and Zhu [WXZ16, § 3.2] as a model of a nonparametric version of order-t Markov chains. Let N stand
for the set of all positive integers and let N0 = N ∪ {0}. For any integer k, we write [k] for the set of elements of N
that are not bigger than k, and we use ⟨k⟩ for the set of elements of N0 that are not bigger than k. For any v, u ∈ Kt,
let RI f (v, u) denote the set of n ∈ N0 such that u ∈ Mn

f (v); we call each n ∈ RI f (v, u) a reachable index of f from v
to u. The t-variable digraph f is strongly connected whenever RI f (v, u) , ∅ for all v, u ∈ Kt. The diameter of f is
the minimum number d ∈ N0 such that for any v, u ∈ Kt it holds RI f (v, u) ∩ ⟨d⟩ , ∅. The period of f is the greatest
common divisor of

⋃
v∈Kt RI f (v, v). For every k ∈ N, let P(k, t) stand for the set of all possible periods of strongly

connected nontrivial t-variable digraphs on a set of k elements. In the notation P(k, t), we may view k as the space
parameter and t as the time parameter for the set of periods. Accordingly, let us adopt the notation PS(t) and PT (k)
for

⋃
k∈N P(k, t) and

⋃
t∈N P(k, t), respectively.

Let p be a positive integer. We write Z/pZ for the finite ring of integers modulo p. Throughout the paper, we
use i + pZ to represent a residue class in Z/pZ while i + pN stands for the set {i + p j : j ∈ N} ⊆ Z. An interval
in Z/pZ of length s ∈ [p] is a set of the form {i + pZ, i + 1 + pZ, . . . , i + s − 1 + pZ} ∈

(
Z/pZ

s

)
, which we denote by

[i + pZ, i + s − 1 + pZ]. When s < p, we can tell from the underlying set of this interval its left endpoint i + pZ and
right endpoint i+ s− 1+ pZ. When s = p, we have to read from its notation [i+ pZ, i+ s− 1+ pZ] the two endpoints.
We mention that [1+ 5Z, 5Z] = [2+ 5Z, 1+ 5Z] = Z/5Z and that [3+ 5Z, 3+ 5Z] is a singleton set but not the whole
set Z/5Z. If we are clear from the context that we are working in Z/pZ, we may safely write [i + pZ, i + s − 1 + pZ]
as [i, i + s − 1]. Let Φ be a map defined on Z/pZ. For any i ∈ Z/pZ, we often use Φi for Φ(i). For any integer i, we
often simplify the notation Φi+pZ to Φi when the parameter p is clear from the context. When I is an interval of Z/pZ
of length s with given left endpoint ℓ and right endpoint r, we often think of ΦI as the product set Φℓ ×Φℓ+1 × · · · ×Φr

and refer to it as a Φ-interval of length s. Note that in Z/5Z, we have [1 + 5Z, 5Z] = [2 + 5Z, 1 + 5Z] surely; but for
any Φ defined on Z/5Z, Φ[1,5] = Φ1 × · · · × Φ5 may not be equal to Φ[2,1] = Φ2 × · · · × Φ6. For any I ⊆ Z, ΦI is often
used interchangeably with ΦI+pZ. In the same manner, when discussing a subset of Z/pZ, we may sometimes directly
write a subset S of Z to refer to {i + pZ : i ∈ S } ⊆ Z/pZ, simply to simplify our notation. The cyclicity theorem for
digraphs claims that each digraph f with finite diameter and positive period p looks like a p-cycle, namely there is a
map Loc from V f to Z/pZ and a positive integer M such that for all u, v ∈ V f it holds RI f (u, v) \ [M] = i + pN \ [M]
for the unique integer i ∈ ⟨p − 1⟩ satisfying i + pZ = Loc(v) − Loc(u). Note that the period of a strongly connected
digraph is also named as its index of imprimitivity and a strongly connected digraph with period 1 is called a primitive
digraph [BR91, § 3.4][Haw13, § 17.2]. It turns out that the cyclicity theorem extends to general t-hydras [WXZ17,
Theorem 10], which explains why the concept of periods of hydras is fundamental for a study of multivariate graph
theory.

Definition 1.1 (Cyclic decomposition [WXZ17, Section 3]). Let t, p ∈ N, let K be a set and let X be a subset of Kt.
A cyclic decomposition of (X,K, t) with period p is a map Φ from Z/pZ to 2K \ ∅ such that Φ[ j, j+t−1] =

∏
i∈⟨t−1⟩Φ j+i,

j ∈ [p], is a partition of X. We refer to t as the order of the cyclic decompositionΦ. A cyclic decomposition of (X,K, t)
is discrete if its period is |X|. Let U stand for the set of triples (p, |K|, t) such that there is a cyclic decomposition of
(Kt,K, t) with period p.

Theorem 1.2 ([WXZ17, Theorem 13]). For any nonempty set K and any p, t ∈ N, it holds (p, |K|, t) ∈ U if and only
if there exists a strongly connected nontrivial t-variable digraph on the vertex set K with period p. Especially, for any
(p, k, t) ∈ N3, it holds p ∈ P(k, t) if and only if (p, k, t) ∈ U.

Example 1.3 ([WXZ17, p. 16]). It holds that 8 ∈ P(2, 4) ⊆ PS(4). Indeed, the map Φ from Z/8Z to 2[4] \ ∅ given
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below is a cyclic decomposition of ([2]4, [2], 4):

Φi =


{1}, if i = 1, 2, 4,
{2}, if i = 5, 6, 8,
{1, 2}, if i = 3, 7.

Note that this construction also appears in [CKMS17a, § 5] and [CKMS17b, § 2.3]. Some more interesting facts about
this construction Φ will be revealed in Example 8.6.

So far, we have briefly illustrated how our investigation into multivariate graph theory leads us to the study of
cyclic decomposition [WXZ17]. Let us demonstrate in Theorem 1.4 some simple sample results from [WXZ17].
Both the Sylvester number and the Frobenius number are important parameters for numerical semigroups, which are
subsets of the set of positive integers with some structural constraints [ADGS20, BCDF20, RGS09]. We can extend
their definitions for general subsets of N here. For each set M ⊆ N, the Sylvester number of M, denoted by nM , is
the size of N \ M, and the Frobenius number of M, denoted by gM , is defined to be maxN0 \ M. When nM = ∞, we
surely use the convention that gM = ∞. We mention that different authors may have different conventions and some
may refer to gM +1 as the Frobenius-Schur index of M [BR91, p. 72]. It is clear that nPS(1) = gPS(1) = 0.

Theorem 1.4. (a) [WXZ17, Theorem 15] gPS(t) < ∞ for all t ∈ N.

(b) [WXZ17, Proposition 16] It holds for every integer t ≥ 2 that PS(t) ∩ [2, 2t − 1] = ∅, and so gPS(t) ≥ 2t − 1.

(c) [WXZ17, Theorem 22] We have PS(2) = N \ {2, 3, 5, 6, 7}. Henceforth, nPS(2) = 5 and gPS(2) = 7.

It is time to introduce the new results to be established in this paper. Theorems 1.5 and 1.6 improve our earlier
work in [WXZ17, Proposition 18] and even the relevant result announced in [WXZ17, p. 15]. We report Theorem 1.7
and Corollary 1.8 as quantitative counterparts of Theorem 1.4 (a). In 2017 we were only attempting to calculate
PS(t) ∩ [3t − 2] [WXZ17, p. 15]. By a complete reexamination of our long reasoning chain constructed in 2017, we
can now present Theorem 1.9 and its slightly more streamlined proof.

Theorem 1.5. Let t ≥ 2 be an integer. Then {2t − 1, 2t − 2, . . . , 2t − ⌊ t
2 ⌋} \ PS(t) , ∅. Henceforth, gPS(t) ≥ 2t − ⌊ t

2 ⌋.

Theorem 1.6. (a) For every integer t ≥ 2, it holds [2, 2
⌈√

2t
⌉
− 1] ∩ PS(t) = ∅.

(b) For every integer t ≥ 4 and every p ∈ PS(t) \ {1} with t ∤ p, it holds p ≥ 2⌈2
√

t⌉.

(c) It holds nPS(t) ≥

⌊
t−1

t (2⌈2
√

t⌉ − 2
⌈√

2t
⌉
)
⌋
+ 2

⌈√
2t

⌉
− 2 for all integers t ≥ 2.

Theorem 1.7. Let t ∈ N and let k be the minimum integer satisfying k ≥ 3 and gcd(t, 3t−2t, . . . , kt−(k−1)t) = gcd(t, 3t−

2t, 4t−2t, . . . , kt−2t) = 1. Then (t−1)(kt−(k−1)t−1)+3t+N0 ⊆ PS(t), namely gPS(t) ≤ (t−1)(kt−(k−1)t−1)+3t−1.

Corollary 1.8. Let t ≥ 2 be an integer and let k be its largest prime factor. Then,

gPS(t) ≤

(t − 1)(3t − 2t − 1) + 3t − 1, if t is a prime or a power of 2,
(t − 1)(kt − (k − 1)t − 1) + 3t − 1, else.

Theorem 1.9. It holds for each t ∈ N that PS(t) ∩ [4t − 1] =


[3], if t = 1,
{1, 4}, if t = 2,
{1, 8}, if t = 3, 4,
{1}, if t ≥ 5.

The remainder of the paper is organized as follows. In Section 2 we define deflation numbers and then make
use of an ingenious idea of Alon et al. [ABHK02, Theorem 1] to get a lower bound estimate of periods in terms of
deflation numbers. Section 3 presents the concepts of t-difference set and diagonal positions. By looking into diagonal
positions, we can establish a lower bound estimate of deflation numbers via our estimate of the minimum size of a
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t-difference set. This work, along with the work in Section 2 enables us to prove Theorems 1.5 and 1.6 in Section 3.
We next turn to upper bounds of Frobenius numbers, and thus we need to design cyclic decompositions. Our main
tool will be so-called rooted cyclic decomposition and we shall prove Theorem 1.7 and Corollary 1.8 in Section 4.
We introduce the idea of height and obtain some basic properties of it in Section 5. Section 6 prepares two technical
results on diagonal positions. As a touchstone for all our tools developed so far for understanding the periods of
hydras, we determine in Section 7 all possible periods ≤ 4t− 1 of t-hydras, namely we deduce Theorem 1.9 there. We
conclude this paper with some further questions and remarks in Section 8.

Remark 1.10. This work, mostly done in 2017, aims to further our research in [WXZ17] on determining the structure
of PS(t), namely the periods of t-hydras. We should mention that the term ‘period’ is also used in a way quite
different from what we discuss in this paper; the same term may refer to some countable class of complex numbers
defined by algebraic integrals, which has been widely studied in mathematics and physics [KZ01]. On the other hand,
we have recently noticed that the active study of universal partial cycles in the field of combinatorics on words is
indeed a study of cyclic decomposition with some constraints, which is closely related to the study of universal partial
words [CK20, CKMS17a, CKMS17b, FGK+23, GGH+18, GS18, SK01]. Partial word was introduced by Berstel and
Boasson [BB99]. Chen, Kitaev, Mütze, and Sun [CKMS17a, CKMS17b] introduced the notion of universal partial
words, a generalization of universal words and De Bruijn sequences. In their terminology, a cyclic decomposition Φ
of (Kt,K, t) with period p such that Φi ∈ {K} ∪

(
K
1

)
for all i ∈ Z/pZ is called a cyclic universal partial word over

K of length t and period p. When |K| = 2, such a construction is named a binary cyclic universal partial word of
length t and period p. Note that Example 1.3 gives a binary cyclic universal partial word of length 4 and period 8.
We will say a bit more on this aspect in Section 8.

2. Lower bound of the Frobenius number: Deflation number

Definition 2.1 (Deflation number and deflation set). Let K be a set, let t ∈ N, and let Φ be a cyclic decomposition of
(Kt,K, t) with period p. Let

Φ#
<
.
=

∣∣∣{i ∈ ⟨t − 1⟩ : Φi , K}
∣∣∣,

and let
Φi
<
.
= { j ∈ ⟨t − 1⟩ : Φi+ j , K}.

for every i ∈ Z/pZ. We name Φ#
< the deflation number of Φ and Φi

< the ith deflation set of Φ.

Prior to proving our results on the deflation number of a cyclic decomposition, we prepare some notations that
will be used throughout our analysis of cyclic decompositions.

Definition 2.2 (Location). Let K be a set, t ∈ N, X ⊆ Kt, and let Φ be a cyclic decomposition of (X,K, t) with period
p. For any word y over K, say y = y0y1 · · · ym ∈ Km+1, we define LocΦ(y) to be the set

{ j : y0y1 · · · ym ∈ Φ j × · · · × Φ j+m} ⊆ Z/pZ.

We may sometimes just consider LocΦ as the map restricted on X ⊆ Kt, which is then a map from X to Z/pZ, when
we identify Z/pZ with

(
Z/pZ

1

)
. Although we may use the notation LocΦ in different contexts, we consistently refer to

it as the location function of Φ.

Remark 2.3. Let K be a set, t ∈ N, and let Φ be a cyclic decomposition of (Kt,K, t) with period p. Assume that A is
a subset of K satisfying LocΦ(at) = j ∈ Z/pZ for all a ∈ A. It is easy to see that LocΦ(x) = j for all x ∈ At. We thus
adopt the notation LocΦ(At) for this common value j ∈ Z/pZ.

After Definition 2.2 we should immediately write down the following most obvious fact about the relation between
location function and cyclic decomposition, though we will need it explicitly only in Sections 5 and 7.

Lemma 2.4. Let K be a set, let t and s be two integers satisfying 1 ≤ s ≤ t − 1 and let Φ be a cyclic decomposition of
(Kt,K, t). For any x ∈ Kt−s, it holds that

⊔
i∈LocΦ(x)Φ[i−s,i−1] =

⊔
i∈LocΦ(x)Φ[i+t−s,i+t−1] = K s.

Proof. Since Φ is a cyclic decomposition of (Kt,K, t), we have
⊔

i∈LocΦ(x)(Φ[i−s,i−1] × x) = K s × x and
⊔

i∈LocΦ(x)(x ×
Φ[i+t−s,i+t−1]) = x × K s. Deleting the common factor x from both sides of the two equalities yields the result.
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Let p ∈ N and let Φ be a map defined on Z/pZ. If there exists ℓ ∈ Z/pZ such that Ψi = Φℓ+i for all i ∈ Z/pZ,
we say that Ψ is a translation of Φ; if there exists ℓ ∈ Z/pZ such that Ψi = Φℓ−i for all i ∈ Z/pZ, we say that Ψ is a
reflection of Φ. We call two maps Φ and Ψ defined on Z/pZ equivalent provided they are translations or reflections
of each other; in other words, modulo the dihedral symmetry of the p-cycle, Φ and Ψ are essentially the same. If Φ
is a cyclic decomposition of (Kt,K, t) with period p, then any map on Z/pZ which is equivalent to Φ is surely still a
cyclic decomposition of (Kt,K, t) with period p. Lemma 2.5 shows that Φ#

< = Ψ
#
< whenever Φ and Ψ are equivalent.

We note that a slightly weaker version of Lemma 2.5 is also reported by Chen et al. [CKMS17b, Lemma 14].

Lemma 2.5. Let K be a set, and let t and p be two positive integers. Let Φ be a cyclic decomposition of (Kt,K, t) with
period p. If Φi = K for some i ∈ [p], then Φi−t = Φi+t = K.

Proof. Suppose for the sake of contradiction that Φi−t , K. This allows us to find y ∈ (K \Φi−t)×Φ[i−t+1,i−1]. Clearly,
LocΦ(y) , i− t. FromΦi = K andΦ[LocΦ(y)+1,LocΦ(y)+t−1]∩Φ[i−t+1,i−1] , ∅we derive thatΦ[LocΦ(y)+1,LocΦ(y)+t]∩Φ[i−t+1,i] ,
∅. By the definition of a cyclic decomposition, this then implies LocΦ(y) = i − t, which is a desired contradiction.

Let Ψi+ j = Φi− j for all j ∈ Z/pZ. It is clear that Ψ is again a cyclic decomposition of (Kt,K, t) with period p.
Applying what we obtain above on the cyclic decomposition Ψ gives that Φi+t = Ψi−t = K.

Corollary 2.6. Let K be a set, t, p ∈ N and Φ be a cyclic decomposition of (Kt,K, t) with period p.

(a) If Φi = K for some i ∈ [p], then Φi+gcd(p,t) = K.

(b) If p ≥ 2 and gcd(p, t) = 1, then Φi , K holds for all i ∈ Z/pZ.

Proof. Invoking Bézout’s identity [Gra24], we can find a, b ∈ Z such that ap + bt = gcd(p, t). Let us assume the
existence of an index i ∈ [p] for which Φi = K. Thanks to Lemma 2.5, Φi = K should guarantee that Φi+gcd(p,t) =

Φi+ap+bt = Φi+bt = K. This confirms (a).
We proceed to validate (b). Let us assume the opposite that Φi = K for some i ∈ Z/pZ. It follows from (a) and

gcd(p, t) = 1 that Φ j = K for all j ∈ Z/pZ. As p ≥ 2 and Φ is a cyclic decomposition, we find that Φ1 × · · · ×Φt = Kt

and Φ2 × · · · × Φt+1 = Kt must be disjoint, which is absurd.

Throughout the paper, we use ⊔ for disjoint union.

Definition 2.7 (Discrete box and subbox). Let t be a positive integer. For any t nonempty sets A1, . . . , At, we call
A .= A1 × A2 × · · · × At a t-dimensional discrete box. For any set B .= B1 × B2 × · · · × Bt satisfying ∅ , B ⊆ A,
we name it a subbox of A, and we define the deflation number of B in A, denoted by DM(A1, . . . , At; B1, . . . , Bt), as∣∣∣{i ⊆ [t] : Bi ⊊ Ai}

∣∣∣. Two subboxes B = B1 × B2 × · · · × Bt and C = C1 ×C2 × · · · ×Ct of a box A = A1 × A2 × · · · × At

are said to be dichotomous relative to A provided there is i ∈ [t] such that Bi ⊔ Ci = Ai; a collection of pairwise
dichotomous subboxes of a box A is called a suit of A [KP08, p. 2].

Theorem 2.8. Let A .
= A1 × A2 × · · · × At be a t-dimensional discrete box. Assume that A =

⊔
j∈[p] B j, where

B j .= B j
1 × · · · × B j

t and DM(A1, . . . , At; B j
1, . . . , B

j
t ) = d j for each j ∈ [p]. Then, it holds∑

j∈[p]

2−d j ≥ 1, (1)

with equality if and only if {B1, . . . , Bp} is a suit of A.

Proof. For each i ∈ [t] and I ⊆ [p] such that Σi,I
.
= (

⋂
j∈I B j

i ) \ (
⋃

j∈[p]\I B j
i ) , ∅, we fix one element σi,I ∈ Σi,I .

Replacing B j
i by {σi,I : Σi,I , ∅, j ∈ I} and Ai by

⋃
j∈[p] B j

i , we see that one can safely assume that A1, . . . , At are all
finite sets.

Let O(A) .=
{
C1 × · · · ×Ct ⊆ A :

∏
j∈[t]|C j| ≡ 1 (mod 2)

}
. For every j ∈ [p], we further define O(A, B j) .={

C ∈ O(A) : |C ∩ B j| ≡ 1 (mod 2)
}
.
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Take j ∈ [p] and assume that {α j
1 < · · · < α

j
d j
} = {i ∈ [t] : B j

i , Ai}. Let I j
1, . . . , I

j
d j

be d j sets such that I j
r ∈

(
Ar
2

)
and |I j

r ∩ B j
r | = 1 for all r ∈ [d j]. For every C ∈ O(A), it is a member of a set of 2d j elements from O(A), namely

CB j;x1,...,xd j , x1, . . . , xd j ∈ {0, 1}, where CB j;x1,...,xd j = C
B j;x1,...,xd j

1 × · · · ×C
B j;x1,...,xd j
t with

C
B j;x1,...,xd j

i =


Ci, if Ci = Ai,

Ci, if i = α j
r and xr = 0,

Ci △ I j
r , if i = α j

r and xr = 1.

Surely, among this group of 2d j elements from O(A), exactly one of them falls inside O(A, B j). Essentially, we now
have an action of the group (Z/2Z)t−d j on O(A), each orbit of it having size 2d j and intersecting with O j(A) exactly
once. This then tells us that

|O(A, B j)|
|O(A)|

=
1

2d j
. (2)

For each C ∈ O(A), C ∩ B1,C ∩ B2, . . . ,C ∩ Bp surely form a partition of it, and so at least one of them is of odd
size. This means that ⋃

j∈[p]

O(A, B j) = O(A). (3)

Putting together Eqs. (2) and (3), we get
∑

j∈[p] 2−d j |O(A)| =
∑

j∈[p]|O(A, B j)| ≥ |O(A)|, and thus (1) follows.
Equality holds in (1) if and only if the union on the left-hand side of Eq. (3) is a disjoint union. Hence, it remains

to show for any { j, j′} ∈
(

[p]
2

)
that O(A, B j) ∩ O(A, B j′ ) = ∅ if and only if there exists i ∈ [t] such that B j

i ⊔ B j′

i = Ai.

Assume that there does not exist any i ∈ [t] such that B j
i ⊔ B j′

i = Ai. For any i ∈ [t], we choose Ci to be a set
{xi} ⊆ B j

i ∩ B j′

i whenever B j
i ∩ B j′

i , ∅, while we choose Ci to be a set {xi, yi, zi} such that xi ∈ B j
i , yi ∈ B j′

i and
zi ∈ Ai \ (B j

i ∪ B j′

i ) whenever B j
i ∪ B j′

i , Ai and B j
i ∩ B j′

i = ∅. It is clear that C1 × · · · × Ct ∈ O(A, B j) ∩ O(A, B j′ ).
Assume that there exists i ∈ [t] such that B j

i ⊔ B j′

i = Ai. Then, for any subbox C of A with |C ∩ B j| ≡ |C ∩ B j′ | ≡ 1
(mod 2), we have |Ci| = |Ci ∩ B j

i | + |Ci ∩ B j′

i | ≡ 1 + 1 ≡ 0 (mod 2), showing that O(A, B j) ∩ O(A, B j′ ) = ∅.

Corollary 2.9. If a t-dimensional discrete box admits a partition into p subboxes with deflation numbers at least d,
then p ≥ 2d.

Proof. This is straightforward from (1), an inequality reported in Theorem 2.8.

Remark 2.10. Recall the map Φ constructed in Example 1.3. One can check that B j .= Φ[ j+1, j+4], j ∈ Z/8Z, gives a
partition of [2]4 into eight subboxes, and DM([2], [2], [2], [2];Φ j+1,Φ j+2,Φ j+3,Φ j+4) = 3 for all j ∈ Z/8Z. Observe
that 8 = 23, which says that the bounds in Theorem 2.8 and Corollary 2.9 are both tight.

Theorem 2.11. Let K be a set and take t ∈ N. Let Φ be a cyclic decomposition of (Kt,K, t) with period p. Then it
holds p ≥ 2Φ

#
< .

Proof. According to Lemma 2.5, for each i ∈ [p], Φ[i+1,i+t] constitutes a subbox of Kt with deflation number Φ#
<. Note

that Φ[i+1,i+t], i ∈ [p], form a partition of Kt. Henceforth, Corollary 2.9 claims that p ≥ 2Φ
#
< , as wanted.

Remark 2.12. In the course of establishing Theorem 2.11 in 2016, we were led to the statement of Corollary 2.9. It
looks so simple that we always expected to find a proof in a few lines. But we got stuck with it for several months
and so we wrote to some friends in different countries for possible help. We had no progress until one day when we
suddenly ran into the paper by Saks [Sak02]. According to him, at the August 1999 meeting at MIT that was held to
celebrate Kleitman’s 65th birthday, a problem due to Kearnes and Kiss [KK99] was presented in the open problem
session, and then a wonderful four-person team solved this problem during the conference [ABHK02]. Actually, our
Corollary 2.9 for d = t coincides with the result conjectured by Kearnes and Kiss and proved by Alon, Bohman,
Holzman and Kleitman. Our proof of (1) in Theorem 2.8, of course, is simply following the proof of [ABHK02,
Theorem 1] by Alon et al. The characterization of the equality case in Theorem 2.8 is essentially the same with
[GKP04, Theorem 2] and [KP08, Theorem 2.1].

6
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3. Lower bound of deflation number: Difference set and diagonal position

Definition 3.1 (t-difference set). For every set S of integers, we write ∂S for the set { j − i : i, j ∈ S , i ≤ j} and name
it the difference set of S . For any t ∈ N, we call S ⊆ [t] a t-difference set provided ∂S = ⟨t − 1⟩ = ∂[t], and we write
Υ(t) to denote the smallest size of a t-difference set. Note that [t] is itself a t-difference set, so Υ(t) is well-defined.
Also note that S ⊆ [t] is a t-difference set if and only if t − ∂S = [t].

Lemma 3.2. (a) It holds Υ(1) = 1 =
⌈√

2 × 1 − 7
4 +

1
2

⌉
=

⌈
2
√

1
⌉
− 1.

(b) It holds Υ(t) ≥
⌈√

2t − 7
4 +

1
2

⌉
for every t ∈ N.

(c) It holds Υ(t) ≤
⌈
2
√

t
⌉
− 1 for every t ∈ N.

(d) It holds Υ(t) =
⌈√

2t − 7
4 +

1
2

⌉
for every t ∈ [10] and Υ(11) = 6 > 5 =

√
2 × 11 − 7

4 +
1
2 .

Proof. (a). This is trivial.
(b). Thanks to (a), we assume t ≥ 2. Take a t-difference set S . From

(
|S |
2

)
≥ |∂S \ {0}| = t − 1 we can obtain

|S | ≥
⌈√

2t − 7
4 +

1
2

⌉
, as desired.

(c). According to (a), we only consider the case of t ≥ 2. For every m ∈ [t − 1], we define fm,t
.
=

⌈
t
m

⌉
− 1 ∈ N and

S m,t
.
= [m] ⊔ {t − jm : j ∈ ⟨ fm,t − 1⟩}. (4)

Take m ∈ [t − 1]. Note that
m fm,t + m ≥ t > m fm,t. (5)

For every i ∈ ⟨m − 1⟩, from 1, i + 1 ∈ S m,t we get i ∈ ∂S m,t . For each i ∈ [t − 1] \ [t − 1 − m fm,t], it holds that
0 ≤ t − 1 − i < m fm,t and t−i

m ≤ 1 + ⌊ t−i−1
m ⌋, which then imply t − m

⌊
t−1−i

m

⌋
∈ S m,t and t − i − m

⌊
t−i−1

m

⌋
∈ [m] ⊆ S m,t,

respectively, thus obtaining [t − 1] \ [t − 1 − m fm,t] ⊆ ∂S m,t . (5) claims that t − 1 ≥ m fm,t ≥ t − m and so it holds
∂S m,t = ⟨t − 1⟩.

Let n and m be positive integers such that m + n =
⌈
2
√

t
⌉
− 1 and that n − m ∈ {0,−1}. It follows from (5) that

m fm,t < t and so we have |S m,t | = m + fm,t. Moreover, it holds

m(n + 1) ≥
(

m + n + 1
2

)2

−
1
4
≥

(
2
√

t
2

)2

−
1
4
= t −

1
4
. (6)

Considering that both m(n+1) and t are integers, (6) indeed gives m(n+1) ≥ t. Therefore, it holds that fm,t =
⌈

t
m

⌉
−1 ≤

n. Now the proof is completed by noting that |S m,t | = m + fm,t ≤ m + n =
⌈
2
√

t
⌉
− 1.

(d). It holds that
⌈√

2t − 7
4 +

1
2

⌉
=

⌈
2
√

t
⌉
− 1 for every t ∈ [9] \ {7}. In view of (b) and (c), we only need to check

(d) for t ∈ {7, 10, 11}. It follows from (b) that Υ(7) ≥ 4 and Υ(10) ≥ 5. Recall the definition of S m,t in Eq. (4). When

t ∈ {7, 10}, it holds that ∂S 2,t = ⟨t − 1⟩ and |S 2,t | = 2 + f2,t =

4, if t = 7
5, if t = 10.

Consequently, we find that Υ(7) = 4 and

Υ(10) = 5. It follows from (c) that Υ(11) ≤ 6. However, a computer enumeration shows that ∂S , ⟨10⟩ for every
S ∈

(
[11]

5

)
. Thereby, we arrive at Υ(11) = 6, as desired.

Definition 3.3 (Diagonal positions). Let K be a set, t ∈ N,
{
kt : k ∈ K

}
⊆ X ⊆ Kt, and let Φ be a cyclic decomposition

of (X,K, t) with period p. The diagonal positions for Φ, denoted by DiagΦ, are defined to be
{
LocΦ(kt) : k ∈ K

}
,

which is a nonempty subset of Z/pZ.

We digress to mention that diagonal positions have been a useful perspective to analyze cyclic decompositions in
[WXZ17], as we will also see shortly in Lemma 3.5. Here is a sample result from [WXZ17], which we will appeal to
in Sections 5 to 7.

7
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Lemma 3.4. Let K be a set, let t and p be positive integers, and let Φ be a cyclic decomposition of (Kt,K, t) with
period p. Then the following statements hold.

(a) [WXZ17, Lemma 51(c)] For all i, j ∈ DiagΦ, it holds i − j < {1 + pZ, 2 + pZ, . . . , t − 1 + pZ}.

(b) It holds |DiagΦ| ≤ ⌊
p
t ⌋.

(c) [WXZ17, Lemma 51(d)] If p ≥ 2, then DiagΦ contains at least two elements.

Proof. (a) and (c) have been proved in [WXZ17, Lemma 51]. Note that they were claimed there with the additional
assumption of the finiteness of K. However, the result holds true for general K whenever it is valid for finite K. To
see this, we only need to notice that the statement of the result allows us to assume, without loss of generality that, for
every J ⊆ Z/pZ, (

⋂
i∈J Φi) \ (

⋃
i∈[p]\J Φi) contains at most one element. With this assumption, we are reduced to the

case of |K| < ∞.
It follows from (a) that i + ⟨t − 1⟩, where i runs through DiagΦ, are pairwise disjoint subsets of Z/pZ. This proves

(b).

Φi

⊆

A

· · · Φi+ j1+ j−t

⊆

A

,

K

· · · Φi+ j1

⊆

A

,

K

· · · Φi+t−1
⊆

A

Φi+t · · · Φi+ j1+ j

⊇

K\ Φi+ j1

Φi+t−1

⊆

A

· · · Φi+ j2− j+t

⊆

A

,

K

· · · Φi+ j2

⊆

A

,

K

· · · Φi

⊆

A

Φi−1 · · · Φi+ j2− j

⊇
K\ Φi+ j2

Figure 1: j1 and j2 as claimed in Lemma 3.5 (a). Note that j ≥ max{t − j1, j2 + 1}.

Lemma 3.5. Let K be a set and let t ∈ N. For any cyclic decompositionΦ of (Kt,K, t) with period p ≥ 2, the following
statements are valid.

(a) Take i ∈ DiagΦ and let A .=
⋂

k∈⟨t−1⟩Φi+k , ∅. Then for every j ∈ [t], there exist two (possibly equal) elements
j1, j2 ∈ Φi

< such that Φi+ j1 ∩ Φi+ j+ j1 = Φi+ j2 ∩ Φi− j+ j2 = ∅, that Φi+ j+ j1 ∩ A = Φi− j+ j2 ∩ A = ∅ and that
{ j + j1 − t,− j + j2 + t} ⊆ Φi

< ⊆ ⟨t − 1⟩.

(b) It holds Φ#
< ≥

t
gcd(p,t)Υ(gcd(p, t)) ≥ t

gcd(p,t)

⌈√
2 gcd(p, t) − 7

4 +
1
2

⌉
.

Proof. (a). It follows from Theorem 1.4 (b) that p ≥ 2t > t ≥ j and so, as Φ is a cyclic decomposition of (Kt,K, t)
with period p, we obtain Φ[i,i+t−1] ∩ Φ[i+ j,i+ j+t−1] = ∅. This implies the existence of j1 ∈ ⟨t − 1⟩ such that

Φi+ j1 ∩ Φi+ j+ j1 = ∅. (7)

Since A ⊆ Φi+ j1 we read from Eq. (7) that Φi+ j+ j1 ∩ A = ∅ and so j + j1 < ⟨t − 1⟩. In view of Lemma 2.5, to show that
{ j1, j + j1 − t} ⊆ Φi

< we need to demonstrate Φi+ j1 , K , Φi+ j+ j1 and j + j1 − t ∈ ⟨t − 1⟩. From Φi+ j+ j1 , ∅ , Φi+ j1
we derive from Eq. (7) that Φi+ j1 , K , Φi+ j+ j1 . Given j1 ∈ ⟨t − 1⟩, j ∈ [t] and j + j1 < ⟨t − 1⟩, it is evident that
j + j1 − t ∈ ⟨t − 1⟩.

Let Ψ be a reflection of Φ defined by Ψℓ = Φ2i+t−1−ℓ for all ℓ ∈ Z/pZ. Note that i ∈ DiagΦ ∩DiagΨ and
A =

⋂
k∈⟨t−1⟩Φi+k =

⋂
k∈⟨t−1⟩Ψi+k. What we have obtained above on the existence of j1 is summarized on the top of

Fig. 1. Replacing Φ by Ψ then yields the bottom of Fig. 1, which demonstrates the existence of the required j2.
(b). We put τ .= gcd(p, t). When τ = 1, we are done by Theorem 1.4 (b), Corollary 2.6 (b), and Lemma 3.2 (a).

Let us proceed with the case of τ ≥ 2.

8
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Pick i ∈ DiagΦ and let T .
= τ − ∂Φi

<∩⟨τ−1⟩. For every j ∈ [τ], (a) ensures the existence of j2 ∈ Φi
< such that

− j + j2 + τ = −( j + t − τ) + j2 + t ∈ Φi
<. It follows that 0 ≤ j2 < − j + j2 + τ ≤ τ − 1, indicating that j =

τ− (− j+ j2+τ)+ j2 ∈ T . Consequently, we find that T ⊇ [τ], implying that ∂Φi
<∩⟨τ−1⟩ = [τ]. By the definition of Υ, this

means that |Φi
<∩⟨τ−1⟩| ≥ Υ(τ). Finally, the proof is completed by applying Corollary 2.6 (a) and Lemma 3.2 (b).

Corollary 3.6. Let K be a set, let t be a positive integer, and let Φ be a cyclic decomposition of (Kt,K, t) with period
p ≥ 2. For any i ∈ DiagΦ, it holds Φi−1 ∩ Φi = Φi+t−1 ∩ Φi+t = ∅.

Proof. This is obtained from Lemma 3.5 (a) by putting j .= 1.

Corollary 3.7. Let K be a set, let t ≥ 2 be an integer, and let s .=
⌊ t

2
⌋
. Let Φ be a cyclic decomposition of (Kt,K, t)

with period at least 2. Then, for every j ∈ N it holds Φ[ j+1, j+s] , K s.

Proof. We assume without loss of generality that 1 ∈ DiagΦ and that A .=
⋂

j∈[t]Φ j , ∅. Corollary 3.6 shows that
Φ1 , K and Φt , K. Therefore, it is sufficient to check that Φ[ j+1, j+s] , K s for every j ∈ [t − s − 1] ⊆ [s].

We assume on the contrary that there exists j ∈ [s] such that Φ[ j+1, j+s] = K s. By substituting i .= 1 and j .= t − s
in Lemma 3.5 (a), we derive the existence of j1, j′1 ∈ Φ

1
< such that j1 − j′1 = s. Since Φ[ j+1, j+s] = K s, it holds either

j + s < j′1 < j1 or j′1 < j1 ≤ j. By symmetry, we assume that j′1 < j1 ≤ j. Since j ≤ s and j′1 ≥ 1, it holds
s = j1 − j′1 ≤ j − 1 < s. This is a contradiction.

Lemma 3.8. For any positive integer t and any p ∈ PS(t) \ {1}, it holds that p ≥ 2
t

gcd(p,t)

⌈√
2 gcd(p,t)− 7

4+
1
2

⌉
.

Proof. It follows from Theorem 2.11 and Lemma 3.5 (b) that p ≥ 2Φ
#
< ≥ 2

t
gcd(p,t)

⌈√
2 gcd(p,t)− 7

4+
1
2

⌉
.

Lemma 3.9. Let t be a positive integer. If p ∈ PS(t) \ {1} and gcd(p, t) = 1, then p ≥ 2t.

Proof. It follows from gcd(p, t) = 1 that

t
gcd(p, t)


√

2 gcd(p, t) −
7
4
+

1
2

 = t.

Therefore, the result is immediate from Lemma 3.8.

Proof of Theorem 1.5. It is clear that we can pick q ∈ {2t − 1, 2t − 2, . . . , 2t − ⌊ t
2 ⌋} such that gcd(q, t) = 1. Since

2t > q > 1, we then conclude from Lemma 3.9 q < PS(t), as wanted.

Proof of Theorem 1.6. Take p ∈ PS(t) \ {1} and then set τ .= gcd(p, t).
When τ = 1, it follows from t ≥ 2 and Lemma 3.9 that p ≥ 2t, and hence p ≥ 2

⌈√
2t

⌉
when t ≥ 2 and p ≥ 2⌈2

√
t⌉

when t ≥ 4. This verifies (a) and (b) when τ = 1.
When τ ≥ 2, it holds that

t
τ


√

2τ −
7
4
+

1
2

 = t
τ


√

2τ −
7
4
+

√
2τ −

7
4
+

1
4

 (8)

≥
t
τ


√

2τ −
7
4
+

√
2 × 2 −

7
4
+

1
4

 (By τ ≥ 2)

=
t
τ

⌈√
2τ

⌉
≥


√

2t
√
τ

. (By t
τ
∈ N)

Since τ ≤ t, we can finish a proof of (a) by applying (8) and Lemma 3.8.

9
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In the case that t ∤ p, it holds τ ≤ t
2 . Henceforth, when τ ≥ 2, we obtain from (8) that t

τ

⌈√
2τ − 7

4 +
1
2

⌉
≥

⌈
√

2t√
t
2

⌉
=⌈

2
√

t
⌉

and so (b) follows from Lemma 3.8.

It follows from (a) and (b) that PS(t) ∩ [2, 2
⌈√

2t
⌉
− 1] = PS(t) ∩

(
[2

⌈√
2t

⌉
, 2⌈2

√
t⌉] \ (tZ)

)
= ∅. Therefore, it holds

nPS(t) ≥

∣∣∣∣[2, 2⌈√
2t

⌉
− 1]

∣∣∣∣ + ∣∣∣∣[2⌈√
2t

⌉
, 2⌈2

√
t⌉] \ (tZ)

∣∣∣∣ ≥ 2
⌈√

2t
⌉
− 2 +

⌊
t−1

t (2⌈2
√

t⌉ − 2
⌈√

2t
⌉
)
⌋
, hence proving (c).

4. Upper bound of the Frobenius number: Rooted cyclic decomposition

Wu, Xu and Zhu introduced strong cyclic decomposition [WXZ17, p. 21] as a means of constructing a large cyclic
decomposition by assembling several smaller combinatorial structures. We adapt it slightly to define rooted cyclic
decompositions below.

Definition 4.1 (Rooted cyclic decomposition). Let K be a set, t ∈ N and X ⊆ Kt. We say that a cyclic decomposition
Φ of (X,K, t) has r ∈ K as its root provided Φi = {r} for all i ∈ [t − 1]. A cyclic decomposition is rooted if it has
a root. We define P∗(X,K, t) to be the set of periods of those cyclic decompositions of (X,K, t); for any r ∈ K, we
define P∗(X,K, t, r) to be the set of periods of those cyclic decompositions of (X,K, t) rooted at r. We further define
P∗(k, t) .= P∗([k]t, [k], t, 1) and PS∗(t) .=

⋃∞
k=1 P

∗(k, t).

We list in Lemma 4.2 some results from [WXZ17] about rooted cyclic decompositions. The statements in Lem-
mas 4.2 (a), 4.2 (c) and 4.2 (d) are weaker than the corresponding ones from [WXZ17]. These weaker claims are
already sufficient for our application in this paper and save us from delving into more technical details.

Lemma 4.2. (a) [WXZ17, Lemma 41] It holds kt ∈ P∗(k, t) for all k, t ∈ N.

(b) [WXZ17, Lemma 42(b)] Let k1 and k2 be two integers such that 1 < k1 ≤ k2. Then P∗(k1, t) ⊆ P∗(k2, t) for every
t ∈ N.

(c) [WXZ17, Lemma 45] Let K be a set and let t ∈ N. Let X and Y be two disjoint subsets of Kt. ThenP∗(X,K, t, r)+
P∗(Y,K, t, r) ⊆ P∗(X ⊔ Y,K, t, r) for every r ∈ K.

(d) [WXZ17, Lemma 48] Let t ≥ 2 be an integer. Then 3t − 2t + tc ∈ P∗([c + 3]t \ [c + 2]t, [c + 3], t, 1) holds for
every nonnegative integer c.

For any sets Y , Z and any element y, let

τy,Y (Z) =

Z, if y < Z,
Z ∪ Y, if y ∈ Z.

That is, the map τy,Y applied on Z substitutes y with {y} ∪ Y whenever y ∈ Z.

Aqr s

Bs

Cqr

Figure 2: Proof of Lemma 4.3.

Lemma 4.3. Let A, B and C be three sets satisfying C ⊇ A ∪ B and A ∩ B , ∅.

(a) Assume that A \ B , ∅. For every t ∈ N, it holds P∗(At \ (A \ B)t, A, t) ⊆ P∗(Ct \ (C \ B)t,C, t).

(b) Assume |A\B| ≥ 2. Then, for every t ∈ N and r ∈ A\B, it holds P∗(At \ (A\B)t, A, t, r) ⊆ P∗(Ct \ (C \B)t,C, t, r).
10
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Proof. We only prove (b), and a proof of (a) can be given in the same manner. Let Φ be a cyclic decomposition of
(At \ (A \ B)t, A, t) with period p and rooted at r. Take s ∈ A ∩ B and q ∈ (A \ B) \ {r}. It is not hard to check that the
map Ψ with Ψi = τs,B\A ◦ τq,C\(A∪B)(Φi) for all i ∈ Z/pZ is a cyclic decomposition of (Ct \ (C \ B)t,C, t) with period p
and rooted at r; see Fig. 2. Therefore, it holds p ∈ P∗(Ct \ (C \ B)t,C, t, r).

a b b′ − b a′ − a

A
B
C

r

r

Figure 3: Proof of Lemma 4.4.

Lemma 4.4. Consider a, a′, b, b′ ∈ N satisfying 2 ≤ a ≤ a′ and b ≤ b′. Then it holds thatP∗([a+b]t\[a]t, [a+b], t, 1) ⊆
P∗([a′ + b′]t \ [a′]t, [a′ + b′], t, 1).

Proof. Let A, B and C be three sets satisfying |A\B| = a, |A∩B| = b, |B\A| = b′−b, C ⊇ A∪B and |C\(A∪B)| = a′−a.
Take r ∈ A \B. Obviously, it holds P∗([a+b]t \ [a]t, [a+b], t, 1) = P∗(At \ (A \B)t, A, t, r) and P∗([a′+b′]t \ [a′]t, [a′+
b′], t, 1) = P∗(Ct \ (C \ B)t,C, t, r); see Fig. 3. The proof is now completed by applying Lemma 4.3 (b).

For any t, k ∈ N, let us define

Q∗(k, t) .=
∞⋃

q=2

P∗([q + k]t \ [q]t, [q + k], t, 1) and QS∗(t) .=
∞⋃

k=1

Q∗(k, t). (9)

Lemma 4.5. Let t, k1 and k2 be three positive integers. Then the following hold true.

(a) Q∗(k1, 1) = [k1].

(b) Q∗(k1, t) ⊆ Q∗(k1 + k2, t).

(c) Q∗(k1, t) + Q∗(k2, t) ⊆ Q∗(k1 + k2, t).

Proof. (a). For any q ∈ N and any s ∈ [k1], we can find disjoint nonempty sets Φ1, . . . ,Φs whose union is [q+k1]\ [q].
It thus follows that P∗([q + k1] \ [q], [q + k1], 1, 1) = [k1] for any q ∈ N. The claim is now immediate from Eq. (9).

(b). For every q ≥ 2, setting a = a′ = q, b = k1 and b′ = k1 + k2 in Lemma 4.4 yields that P∗([q + k1]t \ [q]t, [q +
k1], t, 1) ⊆ P∗([q + k1 + k2]t \ [q]t, [q + k1 + k2], t, 1). According to Eq. (9), we obtain Q∗(k1, t) ⊆ Q∗(k1 + k2, t).

(c). Let p1 ∈ Q
∗(k1, t) and p2 ∈ Q

∗(k2, t). Then there exist two integers k′1 ≥ k1 + 2 and k′2 ≥ k2 + 2 such that
p1 ∈ P

∗([k′1]t \ [k′1 − k1]t, [k′1], t, 1) and p2 ∈ P
∗([k′2]t \ [k′2 − k2]t, [k′2], t, 1), respectively. Let k′ .= k′1 + k′2 ≥ 6. In light

of Lemma 4.4, we then find thatp1 ∈ P
∗([k′1 + k′2 − k2]t \ [k′1 − k1 + k′2 − k2]t, [k′1 + k′2 − k2], t, 1) = P∗([k′ − k2]t \ [k′ − k1 − k2]t, [k′], t, 1),

p2 ∈ P
∗([k′1 + k′2]t \ [k′1 + k′2 − k2]t, [k′1 + k′2], t, 1) = P∗([k′]t \ [k′ − k2]t, [k′], t, 1).

Finally, an application of Lemma 4.2 (c) shows that p1 + p2 ∈ P
∗([k′]t \ [k′ − k1 − k2]t, [k′], t, 1) ⊆ Q∗(k1 + k2, t).

Lemma 4.6. It holds PS∗(t) + QS∗(t) ⊆ PS∗(t) for all t ∈ N.

Proof. Take p ∈ PS∗(t) and q ∈ QS∗(t). Then we can find three integers k1, k2 and k3 such that k1 ≥ 1, k2 > k3 ≥ 2,

p ∈ P∗([k1]t, [k1], t, 1) and q ∈ P∗([k2]t \ [k3]t, [k2], t, 1). (10)

Let k .= max(k1, k3) and k′ .= k2 + k − k3. By Lemma 4.2 (b), Eq. (10) gives p ∈ P∗([k]t, [k], t, 1); substituting a .= k3,
a′ .= k and b = b′ .= k2 − k3 in Lemma 4.4, it follows from Eq. (10) that q ∈ P∗([k′]t \ [k]t, [k′], t, 1). Accordingly, as a
consequence of Lemma 4.2 (c), p + q ∈ P∗([k]t, [k], t, 1) ⊆ PS∗(t), as desired.

11
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For any positive integers d and t, the t-dimensional De Bruijn digraph on the symbol set [d], denoted by B(d, t), is
the digraph with vertex set [d]t and arc set [d]t+1, where each arc (s1, . . . , st+1) ∈ [d]t+1 has the initial vertex (s1, . . . , st)
and the terminal vertex (s2, . . . , st+1).

Lemma 4.7 ([WXZ17, Lemma 47]). Let d ≥ 2 and t ≥ 2 be two integers, and let X .= [d + 1]t \ [d]t. Then there exists
a discrete cyclic decomposition ∆ of (X, [d + 1], t) such that ∆i = {d + 1} for all i ∈ [2t − 1] \ {t} and that ∆t = {d}.

Proof. Let H be the subdigraph of B(d + 1, t − 1) with vertex set [d + 1]t−1 and arc set X. Note that H is strongly
connected as for any two vertices x = (x1, . . . , xt−1) and y = (y1, . . . , yt−1) from [d + 1]t−1,

x→ (x2, . . . , xt−1, d + 1)→ (x3, . . . , xt−1, d + 1, y1)→ (x4, . . . , xt−1, d + 1, y1, y2)→ · · · → (d + 1, y1, . . . , yt−2)→ y

is a walk from x to y in H. For each vertex v of B(d + 1, t − 1), the number of arcs from [d]t with v as the initial vertex
is equal to the number of arcs from [d]t with v as the terminal vertex. This implies that H is Eulerian. For every i ∈ [t],
let σi represent the word

(d + 1, . . . , d + 1︸             ︷︷             ︸
i−1

, d, d + 1, . . . , d + 1︸             ︷︷             ︸
t−i

) ∈ [d + 1]t,

and write Σ for {σi : i ∈ [t]}. Note that going through the arcs σt, σt−1, . . . , σ1 in this order gives rise to a closed walk
in H. We need to construct a discrete cyclic decomposition ∆ of (X, [d + 1], t) satisfying {σt} = ∆[t], that is, we aim to
demonstrate the existence of an Eulerian cycle in H containing the walk σt, σt−1, . . . , σ1. By the connectedness of H,
this is ensured by the existence of an Eulerian cycle in H − Σ. In the case of t = 2, the only arc of H − Σ is the loop
going from d + 1 to itself and so we are done. As H is Eulerian, it thus remains to illustrate that H − Σ is strongly
connected under the assumption of t ≥ 3. Let

z .= (1, . . . , 1︸  ︷︷  ︸
t−2

, d + 1) ∈ [d + 1]t−1.

Take x = (x1, . . . , xt−1) arbitrarily from [d + 1]t−1. We will construct in H − Σ a walk Wx,z from x to z and a walk Wz,x

from z to x. For each ℓ ∈ N0, let us designate by Wℓ the set of all walks in H − Σ of length ℓ.

Case 1. x < [d]t−1.

We can choose Wx,z ∈ W t+2 to be

x→ (x2, . . . , xt−1, 1)→ (x3, . . . , xt−1, 1, d + 1)→ (x4, . . . , xt−1, 1, d + 1, 1)→ (x5, . . . , xt−1, 1, d + 1, 1, 1)→ · · ·
→ (xi, . . . , xt−1, 1, d + 1, 1, . . . , 1︸  ︷︷  ︸

i−3

)→ · · · → (1, d + 1, 1, . . . , 1︸  ︷︷  ︸
t−3

)→ (d + 1, 1, . . . , 1︸  ︷︷  ︸
t−2

)→ (1, . . . , 1︸  ︷︷  ︸
t−1

)→ z

and Wz,x ∈ W t to be

z→ (1, . . . , 1︸  ︷︷  ︸
t−3

, d + 1, 1)→ (1, . . . , 1︸  ︷︷  ︸
t−4

, d + 1, 1, x1)→ · · · → (d + 1, 1, x1, . . . , xt−3)→ (1, x1, . . . , xt−2)→ x.

Note that d ≥ 2 and t ≥ 3 together ensures that the first two arcs of Wx,z and the last two arcs of Wz,x do not belong to
Σ.

Case 2. x ∈ [d]t−1.

We can check that the two walks Wx,z ∈ W t+1 and Wz,x ∈ W t−1 are what we are seeking for, where

Wx,z
.
= x→ (x2, . . . , xt−1, d + 1)→ (x3, . . . , xt−1, d + 1, 1)→ (x4, . . . , xt−1, d + 1, 1, 1)
→ · · · → (xi, . . . , xt−1, d + 1, 1, . . . , 1︸  ︷︷  ︸

i−2

)→ · · · → (d + 1, 1, . . . , 1︸  ︷︷  ︸
t−2

)→ (1, . . . , 1︸  ︷︷  ︸
t−1

)→ z

and

Wz,x
.
= z→ (1, . . . , 1︸  ︷︷  ︸

t−3

, d + 1, x1)→ (1, . . . , 1︸  ︷︷  ︸
t−4

, d + 1, x1, x2)→ · · · → (d + 1, x1, . . . , xt−2)→ x.

We have used d ≥ 2 and t ≥ 3 here to guarantee that the first arc of Wx,z and the last arc of Wz,x do not belong to Σ, as
well as even the existence of the first arc in Wz,x.

12



/ 00 (2024) 1–34 13

Remark 4.8. If we let t = 1, the result in Lemma 4.7 trivially fails. If t = 2 and d = 1, the map Φ ∈ [2]Z/3Z given by
∆1 = {2},∆2 = {1} and ∆3 = {2} is surely a discrete cyclic decomposition of ([2]2 \ {11}, [2], 2).

Let us explain that Lemma 4.7 does not extend to the case of d = 1 and t ≥ 3. Indeed, assume to the contrary that
there is a discrete cyclic decomposition ∆ of ([2]t \ [1]t, [2], t) with ∆[2t−1] = (2, . . . , 2︸  ︷︷  ︸

t−1

, 1, 2, . . . , 2︸  ︷︷  ︸
t−1

). Note that the period

of ∆ is 2t − 1 ≥ 2t+ 1. Comparing ∆[t] and ∆[t+1,2t] yields ∆2t = {2}. We thus find that ∆[t−1] = ∆[t+1,2t−1] = ∆[t+2,2t] and
so ∆[t+2,2t+1] ∈ {∆[t],∆[t+1,2t]}, which is absurd.

In the statement of [WXZ17, Lemma 47], the condition d ≥ 2 is missing. Let Σ be the subset of [d + 1]t as
defined in the proof of Lemma 4.7. In the proof of [WXZ17, Lemma 47], the authors first obtain a discrete cyclic
decomposition Q on [d + 1]t \ (Σ ∪ {(d + 1, d + 1, . . . , d + 1︸                      ︷︷                      ︸

t

)}) and then claim that one can obtain a discrete cyclic

decomposition [d + 1]t \ Σ from Q. This claim is not valid when d = 1. Fortunately, whenever [WXZ17, Lemma 47]
is used throughout [WXZ17], the condition of d > 1 is always fulfilled.

Lemma 4.9 ([Bra42, Theorem 1]). Let a1 < a2 < · · · < an be n positive integers with gcd(a1, a2, . . . , an) = 1. Then it
holds (a1 − 1)(an − 1) + N0 ⊆ a1N0 + a2N0 + · · · + anN0.

Lemma 4.10. Let t be a positive integer and let k be the minimum integer satisfying k ≥ 3 and gcd(t, 3t − 2t, . . . , kt −

(k − 1)t) = 1. Then for every p ≥ (t − 1)(kt − (k − 1)t − 1) + 3t − 2t, it holds p ∈ QS∗(t).

Proof. When t = 1, it follows from Lemma 4.5 (a) that QS∗(t) = N. We assume in the sequel that t ≥ 2.
Let n = k − 1, a1 = t and ai = (i + 1)t − it for every i ∈ [k − 1] \ {1}. An application of Lemma 4.9 leads to

p ∈ (3t − 2t + tN0) + (3t − 2t)N0 + · · · + (kt − (k − 1)t)N0. (11)

By Lemma 4.2 (d), we have 3t − 2t + tc ∈ Q∗(1, t) for all c ∈ N0. It follows from Lemma 4.7 that (d + 1)t − dt ∈

P∗([d + 1]t \ [d]t, [d + 1], t, 1) ⊆ Q∗(1, t) for every d = 2, . . . , k − 1. This combined with Lemma 4.5 (c) implies that

(3t − 2t + tN0) + (3t − 2t)N0 + · · · + (kt − (k − 1)t)N0 ⊆ QS
∗(t).

Taking into account Eq. (11), this completes the proof.

Lemma 4.11. Let t ∈ N and let k be the minimum integer satisfying k ≥ 3 and gcd(t, 3t−2t, . . . , kt−(k−1)t) = gcd(t, 3t−

2t, 4t−2t, . . . , kt−2t) = 1. Then (t−1)(kt−(k−1)t−1)+3t+N0 ⊆ PS
∗(t), namely gPS∗(t) ≤ (t−1)(kt−(k−1)t−1)+3t−1.

Proof. It holds

2t + ((t − 1)(kt − (k − 1)t − 1) + 3t − 2t + N0) ⊆ P∗(2, t) + QS∗(t) (By Lemmas 4.2 (a) and 4.10)
⊆ PS

∗(t) + QS∗(t)
⊆ PS

∗(t), (By Lemma 4.6)

as wanted.

Proof of Theorem 1.7. This follows directly from Lemma 4.11 and the fact that PS∗(t) ⊆ PS(t) for all t ∈ N.

Lemma 4.12. Let t ≥ 2 be an integer, let p be the largest prime divisor of t, and let k .= max(p, 3). Then (t − 1)(kt −

(k − 1)t − 1) + 3t + N0 ⊆ PS(t), namely gPS(t) ≤ (t − 1)(kt − (k − 1)t − 1) + 3t − 1.

Proof. If gcd(t, 3t−2t, . . . , kt− (k−1)t) = 1, we can employ Theorem 1.7 to conclude the proof. Thus, we may assume
that t′ is a prime factor of g .= gcd(t, 3t − 2t, . . . , kt − (k − 1)t) and aim to derive a contradiction. Note that t′ ≤ p ≤ k.
If t′ ≥ 3, from t′ | g we deduce t′ | ((t′)t − (t′ − 1)t), which is absurd. If t′ = 2, from t′ | g we deduce t′ | (3t − 2t),
which is again impossible.

Lemma 4.13. For each prime number t, it holds (t − 1)(3t − 2t − 1) + 3t + N0 ⊆ PS(t), namely gPS(t) ≤ (t − 1)(3t −

2t − 1) + 3t − 1.

Proof. Since gcd(t, 3t − 2t) = 1, we can substitute k .= 3 in Theorem 1.7 to obtain the desired result.

Proof of Corollary 1.8. Combine Lemmas 4.12 and 4.13.
13
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5. Height

Definition 5.1 (Height). Let K be a set, let t be a positive integer, and let Φ be a cyclic decomposition of (Kt,K, t).
For any a ∈ K, let ξΦ,a be the set {s ∈ [t] :

⊔ j
j′= j−sΦ[ j′, j′+s−1] = K s}, where j = LocΦ(at), and let

hΦ,a =

0, if ξΦ,a = ∅,
max ξΦ,a, else.

We call hΦ,a the height of a ∈ K in the cyclic decomposition Φ. Assume that A is a nonempty subset of K satisfying
LocΦ(at) = LocΦ(bt) for all a, b ∈ A. We adopt the notation hΦ,A for this common value of hΦ,a, a ∈ A. Recall from
Remark 2.3 a related notation of LocΦ(At).

Lemma 5.2 provides several different characterizations of the height function of a cyclic decomposition of order
t ≥ 2. After that, we shall further develop some tools from the perspective of the height function that are useful in
establishing nonexistence results for cyclic decompositions.

Lemma 5.2. Let K be a set, let t, p ∈ N \ {1}, and let Φ be a cyclic decomposition of (Kt,K, t) with period p. Take

j ∈ DiagΦ, A ∈
(⋂ j+t−1

i= j Φi

>0

)
and q .= hΦ,A ≤ t. Let Σ = Φ j ×Φ j+1 × · · · ×Φ j+t−q−1 ∪ · · · ∪Φ j+q ×Φ j+q+1 × · · · ×Φ j+t−1 and

let Σ′ = Φ j × Φ j+1 × · · · × Φ j+t−q−2 ∪ · · · ∪ Φ j+q+1 × Φ j+q+2 × · · · × Φ j+t−1.

(a) It holds LocΦ(x) ∩ ( j + s + [t − s]) = ∅ for every s ∈ ⟨t − 1⟩ and every x ∈ At−s.

(b) For any x ∈ At−q, it holds that LocΦ(x) ⊆ j + ⟨q⟩; for any y ∈ At−q−1, it holds that LocΦ(y) \ ( j + ⟨q + 1⟩) , ∅.

(c) For any x ∈ At−q, it holds that x < (
⋃

k∈Z/pZΦk × Φk+1 × · · · × Φk+t−q−1) \ Σ; for any y ∈ At−q−1, it holds
y ∈ (

⋃
k∈Z/pZΦk × Φk+1 × · · · × Φk+t−q−2) \ Σ′.

(d) Let Ψi
.
= Φ2 j+t−1−i for every i ∈ Z/pZ. Then we have hΨ,A = hΦ,A = q.

(e) Take s ∈ ⟨t − 1⟩ and x ∈ At−s. It holds LocΦ(x) ⊆ j + ⟨s⟩ if and only if s ∈ ⟨q⟩.

(f) For every s ∈ [t], q ≥ s if and only if
⊔ j

j′= j−sΦ[ j′, j′+s−1] = K s.

(g) For every s ∈ [t], q ≥ s if and only if
⊔ j

j′= j−sΦ[t+ j′,t+ j′+s−1] = K s.

(h) It holds that ξΦ,a = [hΦ,a] = [hΦ,A] for every a ∈ A.

Proof. (a). According to Corollary 3.6, it follows from j ∈ DiagΦ thatΦ j+t−1∩Φ j+t = ∅. We pick i ∈ [t−s]. Then, from
xi ∈ A ⊆ Φ j+t−1 we obtain that xi < Φ j+t. As a result, it holds x < Φ[ j+t−i+1, j+2t−i−s], and hence j + t − i + 1 < LocΦ(x).
We now see that LocΦ(x) ∩ [ j + s + 1, j + t] = ∅, as desired.

(b). By Theorem 1.4 (b), we deduce from t ≥ 2 that

q ∈ ⟨t − 1⟩. (12)

Since p ≥ 2, it follows from Theorem 1.4 (b) and Eq. (12) that

p ≥ 2t ≥ 2(q + 1) > 2q + 1 ≥ q + 1. (13)

Take { j′, j′′} ∈
(

[ j−q−1, j]
2

)
. By Eq. (13), p > q + 1 ≥ | j′′ − j′|. Accordingly, we find that Φ[ j′, j′+t−1] ∩ Φ[ j′′, j′′+t−1] = ∅.

Because A ∈
(⋂ j+t−1

i= j Φi

>0

)
and j ∈ DiagΦ, it holds Φ[ j′+q+1, j′+t−1] ∩ Φ[ j′′+q+1, j′′+t−1] ⊇ At−q−1 , ∅. We thus arrive at

Φ[ j′, j′+q] ∩ Φ[ j′′, j′′+q] = ∅. (14)

Making use of A ∈
(⋂ j+t−1

i= j Φi

>0

)
and j ∈ DiagΦ again, we find that

x ∈ At−q ⊆

j⋂
j′= j−q

Φ[ j′+q, j′+t−1]. (15)

14
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Consequently, the definition of hΦ,A ensures that

j⊔
j′= j−q

Φ[ j′, j′+q−1] = Kq (16)

and, in view of Eq. (14), that
j⊔

j′= j−q−1

Φ[ j′, j′+q] ⊊ Kq+1. (17)

By Eqs. (15) and (16), Kq × x ⊆ (
⊔ j

j′= j−qΦ[ j′, j′+q−1]) × (
⋂ j

j′= j−qΦ[ j′+q, j′+t−1]) ⊆
⊔ j

j′= j−qΦ[ j′, j′+t−1]. This proves that

LocΦ(x) ⊆ j + ⟨q⟩. By Eq. (17), Kq+1 × y ⊈
⊔ j

j′= j−q−1Φ[ j′, j′+t−1], which implies that LocΦ(y) \ ( j + ⟨q + 1⟩) , ∅.
(c). This is immediate from (b).
(d). By the symmetry between Σ and Σ′ with respect to Ψ and Φ, (c) enables us to get this claim.
(e). We first consider the case of s ∈ ⟨q⟩. Pick i ∈ ⟨q − s⟩ and let x = x1x2x3 where x1 ∈ Ai, x2 ∈ At−q and

x3 ∈ Aq−s−i. The first part of (b) asserts that LocΦ(x) + i ⊆ LocΦ(x1) ⊆ j + ⟨q⟩, and hence LocΦ(x) ⊆ j + ⟨q⟩ − i
follows. Eq. (13) ensures that p > 2q + 1, and so we have j + q + 1 < j + [−q, q] ⊇ ( j + ⟨q⟩) ∪ ( j + [s − q, s]), namely
( j+ ⟨q⟩)∩ ( j+ [s−q, s]) = j+ ⟨s⟩. We thus obtain LocΦ(x) ⊆

⋂
i∈⟨q−s⟩( j+ ⟨q⟩− i) ⊆ ( j+ ⟨q⟩)∩ ( j+ [s−q, s]) = j+ ⟨s⟩,

as wanted.
Then we turn to the case of s ∈ ⟨t− 1⟩ \ ⟨q⟩. We fix a ∈ A and put x′ = xas−q−1 ∈ At−q−1. By the second part of (b),

we have LocΦ(x′) ⊈ j + ⟨q + 1⟩. This along with (a) says that LocΦ(x′) ⊈ j + ⟨t − 1⟩ ⊇ j + ⟨s⟩. Since x′ = xas−q−1,
we are ready to conclude that LocΦ(x) ⊈ j + ⟨s⟩, completing a proof of (e).

(f) and (g). Since t ≥ 2, Theorem 1.4 (b) tells us that
⊔ j

j′= j−t Φ[ j′, j′+t−1] , Kt and that
⊔ j

j′= j−t Φ[ j′+t, j′+2t−1] , Kt.
By virtue of Eq. (12), we get both (f) and (g) for the case of s = t.

Take s ∈ [t− 1] and x ∈ At−s. It is obvious that j+ ⟨s⟩ ⊆ LocΦ(x). Therefore, (e) says that LocΦ(x) = j+ ⟨s⟩ if and
only if s ∈ ⟨q⟩. It is evident that both (f) and (g) are now consequences of Lemma 2.4.

(h). Let a ∈ A. It follows from Definition 5.1 and (f) that s ∈ ξΦ,a for every s ∈ [hΦ,a]. As a result, it holds
ξΦ,a = [hΦ,a].

Lemma 5.3. Let K be a set and Φ be a cyclic decomposition of (K3,K, 3) with period p ≥ 3. Let j ∈ DiagΦ,
ℓ ∈ (Z/pZ) \ { j, j + 1, j + 2}, A .=

⋂ j+2
i= j Φi and B .=

⋂ℓ+2
i=ℓ Φi. Assume that hΦ,A ≥ 1. Then the following hold.

(a) If Φℓ ∩ A , ∅, then Φℓ−1 ∩ A = Φℓ+1 ∩ A = ∅.

(b) Φℓ−1 ∩ Φℓ ∩ A = Φℓ ∩ Φℓ+1 ∩ A = ∅.

(c) Assume Φℓ ∩ A , ∅. Then Φℓ ⊇ A provided either Φℓ ⊔ Φℓ+1 = K or Φℓ ⊔ Φℓ−1 = K.

(d) If DiagΦ = { j, ℓ}, then Φℓ = Φℓ+2 = B.

(e) If DiagΦ = { j, ℓ} and hΦ,B ≥ 1, then Φℓ = Φℓ+2 = Φ j−1 = Φ j+3 = B and Φℓ−1 = Φℓ+3 = Φ j = Φ j+2 = A.

Proof. (a). The assumption of hΦ,A ≥ 1 allows us to substitute s = 1 in Lemma 5.2 (e) and then find that both
A2 ∩ Φ[ℓ−1,ℓ] and A2 ∩ Φ[ℓ,ℓ+1] are empty. Since Φℓ ∩ A , ∅, we must have Φℓ−1 ∩ A = Φℓ+1 ∩ A = ∅.

(b). This is immediate from (a).
(c). We see from (a) that Φℓ−1 ∩ A = Φℓ+1 ∩ A = ∅. Henceforth, Φℓ ⊔ Φℓ+1 = K implies Φℓ = K \ Φℓ+1 ⊇ A, and

Φℓ ⊔ Φℓ−1 = K implies Φℓ = K \ Φℓ−1 ⊇ A.
(d). By definition, we have B ⊆ Φℓ ∩ Φℓ+2. So, as A = K \ B, it remains to show Φℓ ∩ A = Φℓ+2 ∩ A = ∅.
Note that Φ[ j, j+1] ∩ Φ[ j+1, j+2] ⊇ A2 implies Φ j−1 ∩ A ⊆ Φ j−1 ∩ Φ j = ∅; in the same vein, we deduce from

Φ[ j, j+1] ∩ Φ[ j+1, j+2] ⊇ A2 that A ∩ Φ j+3 ⊆ Φ j+2 ∩ Φ j+3 = ∅.
By virtue of Lemma 3.4 (a), { j, j + 1, j + 2} ∩ {ℓ, ℓ + 1, ℓ + 2} = ∅. So, our task is to verify that Φℓ ∩ A = ∅

when ℓ − 1 < { j, j + 1, j + 2} and that Φℓ+2 ∩ A = ∅ when ℓ + 3 < { j, j + 1, j + 2}. But Corollary 3.6 implies that
Φℓ−1 ⊆ K \ Φℓ ⊆ K \ B = A and Φℓ+3 ⊆ K \ Φℓ+2 ⊆ K \ B = A. This says that we can apply (a), replacing ℓ by ℓ − 1
and ℓ + 3 respectively, and then complete the proof.

15
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(e). Recall from (d) that Φℓ = Φℓ+2 = B. Taking into account ℓ ∈ DiagΦ and hΦ,B ≥ 1, Lemma 5.2 (f) then tells us
Φℓ−1 = K \ Φℓ = A while Lemma 5.2 (g) gives us Φℓ+3 = K \ Φℓ+2 = A.

Swapping the role of j and ℓ, the same argument shows that Φ j = Φ j+2 = A and Φ j−1 = Φ j+3 = B.

Lemma 5.4. Let K be a set, let t ≥ 2 be an integer, and let Φ be a cyclic decomposition of (Kt,K, t). Then it holds
hΦ,x = hΦ,y for any x, y ∈ K satisfying LocΦ(xt) = LocΦ(yt) + t.

Proof. Let p be the period ofΦ. There is nothing to prove when p = 1. We thus assume p > 1. Let hΦ,x = q, hΦ,y
.
= q′,

j .= LocΦ(xt) and j′ .= LocΦ(yt) = j − t. Note that

j′⊔
ℓ= j′−q

Φ[ℓ+t,ℓ+t+q−1] =

j′+t⊔
ℓ= j′+t−q

Φ[ℓ,ℓ+q−1]

=

j⊔
ℓ= j−q

Φ[ℓ,ℓ+q−1]

= Kq. (By Lemma 5.2 (f))

Consequently, Lemma 5.2 (g) allows us to get q ≤ q′. By symmetry, we also have q′ ≤ q and so the result follows.

Whenever we have a ground set in mind, for each subset K of that ground set, we use 1K to denote the characteristic
function of K, whose domain is the implicit ground set that the reader should have no difficulty recognizing from the
context.

Lemma 5.5. Let K be a set, let t ≥ 2 be an integer, and let Φ be a cyclic decomposition of (Kt,K, t) with hΦ,A ≥ 1 for
A .=

⋂
i∈[t]Φi , ∅. Then the following statements hold.

(a) There exists a nonempty subset B of K \ A such that it holds either

Φi =


K, if − (hΦ,A −1) ≤ i ≤ −1
B, if i = 0
K \ B, if 1 ≤ i ≤ hΦ,A

or

Φi =


B, if − (hΦ,A −1) ≤ i ≤ 0
K \ B, if i = 1
K, if 2 ≤ i ≤ hΦ,A .

(b) There exists a nonempty subset C of K \ A such that it holds either

Φt+i =


K, if 2 ≤ i ≤ hΦ,A
C, if i = 1
K \C, if − (hΦ,A −1) ≤ i ≤ 0

or

Φt+i =


C, if 1 ≤ i ≤ hΦ,A
K \C, if i = 0
K, if − (hΦ,A −1) ≤ i ≤ −1.

Proof. Let p be the period of Φ. From hΦ,A ≥ 1, we get that p > 1. By virtue of Lemma 5.2 (d), the two statements
(a) and (b) have an apparent symmetry, which means that we only need to establish the validity of one of them, say
(a).

Let B .= Φ0 , ∅. According to Lemma 5.2 (f), it follows from hΦ,A ≥ 1 that Φ0 ⊔Φ1 = K, and so ∅ , Φ1 = K \ B.
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If hΦ,A ≥ 2, we know from Lemma 5.2 (f) that Φ[−1,0] ⊔Φ[0,1] ⊔Φ[1,2] = K2. Since the deflation number of Φ[0,1] in
K2 is 2, Theorem 2.8 implies that one of Φ−1 and Φ2 must be K. They cannot be equal to K simultaneous, as it gives
Φ[−1,0] ∩ Φ[1,2] , ∅. Therefore, we find that (1) holds with equality. In view of Theorem 2.8 again, by checking the
two 2-boxes Φ[−1,0] = Φ−1 × B and Φ[1,2] = (K \ B) × Φ2, we know that either Φ−1 ⊔ (K \ B) = K or B ⊔ Φ2 = K. To
sum up, we have either (Φ−1,Φ2) = (K,K \ B) or (Φ−1,Φ2) = (B,K).

Case 1. (Φ−1,Φ2) = (K,K \ B).

Assume that for some integer r with 2 ≤ r ≤ hΦ,A −1 we have known that (Φ−i,Φ1+i) = (K,K \B) for all i ∈ [r−1].
Let us show that (Φ−r,Φ1+r) = (K,K \ B). Surely, whenever this can be accomplished, we have completed a proof of
the lemma by induction.

For any j′ ∈ [−r, 1], let d j′ = DM(Φ j′ , . . . ,Φ j′+r; K, . . . ,K). Note that

d−g = DM(Φ−g, . . . ,Φ−g+r; K, . . . ,K) = DM(K, . . . ,K︸    ︷︷    ︸
g

, B,K \ B, . . . ,K \ B︸               ︷︷               ︸
r−g

; K, . . . ,K) = r − g + 1

for all g ∈ ⟨r − 1⟩. Moreover, we have

d−r = DM(Φ−r, . . . ,Φ0; K, . . . ,K) = DM(Φ−r,K, . . . ,K︸    ︷︷    ︸
r−1

, B; K, . . . ,K) = 1 + 1Φ−r,K

and
d1 = DM(Φ1, . . . ,Φ1+r; K, . . . ,K) = DM(K \ B, . . . ,K \ B︸               ︷︷               ︸

r

,Φ1+r, ; K, . . . ,K) = r + 1Φ1+r,K .

Applying Lemma 5.2 (f) for s = r + 1 ≤ hΦ,A and j = 1, we find that
⊔1

j′=−r Φ[ j′, j′+r] = Kr+1. Then we further infer
from Theorem 2.8 that

1 ≤
1∑

j′=−r

2−d j′ = 2−(r+1Φ1+r,K ) + 2−(1+1Φ−r,K ) + (1 − 2−1 − 2−(r+1)). (18)

As r ≥ 2, (18) holds only if 1Φ−r,K = 0, namely Φ−r = K. Since Φ[−r,0] ∩ Φ[1,1+r] = ∅, we obtain Φ1+r , K.
Consequently, (18) holds with equality. Examining the two (r + 1)-boxes, Φ[−r,0] and Φ[1,1+r], Theorem 2.8 now gives
us B ⊔ Φ1+r = Φ0 ⊔ Φ1+r = K, as desired.

Case 2. (Φ−1,Φ2) = (B,K).

To complete the proof, as in the last case, we need to show that (Φ−r,Φ1+r) = (B,K) for any r satisfying 2 ≤ r ≤
hΦ,A −1, under the assumption that (Φ−i,Φ1+i) = (B,K) for all i ∈ [r − 1].

For any j′ ∈ [−r, 1], let d j′ = DM(Φ j′ , . . . ,Φ j′+r; K, . . . ,K). Note that

d−g = DM(Φ−g, . . . ,Φ−g+r; K, . . . ,K) = DM(B, . . . , B︸   ︷︷   ︸
g+1

,K \ B,K, . . . ,K︸    ︷︷    ︸
r−g−1

; K, . . . ,K) = g + 2

for all g ∈ ⟨r − 1⟩. Moreover, we have

d−r = DM(Φ−r, . . . ,Φ0; K, . . . ,K) = DM(Φ−r, B, . . . , B︸   ︷︷   ︸
r

; K, . . . ,K) = r + 1Φ−r,K

and
d1 = DM(Φ1, . . . ,Φ1+r; K, . . . ,K) = DM(K \ B,K, . . . ,K︸    ︷︷    ︸

r−1

,Φ1+r; K, . . . ,K) = 1 + 1Φ1+r,K .

Applying Lemma 5.2 (f) for s = r + 1 ≤ hΦ,A and j = 1, we find that
⊔1

j′=−r Φ[ j′, j′+r] = Kr+1. Then we further infer
from Theorem 2.8 that

1 ≤
1∑

j′=−r

2−d j′ = 2−(1+1Φ1+r,K ) + 2−(r+1Φ−r,K ) + (1 − 2−1 − 2−(r+1)). (19)

17



/ 00 (2024) 1–34 18

As r ≥ 2, (19) holds only if 1Φ1+r,K = 0, namely Φ1+r = K. Since Φ[−r,0] ∩ Φ[1,r+1] = ∅, we obtain Φ−r , K.
Consequently, (19) holds with equality. Having a look at the two (r + 1)-boxes, Φ[−r,0] and Φ[1,r+1], Theorem 2.8 now
gives us Φ−r ⊔ (K \ B) = Φ−r ⊔ Φ1 = K, as wanted.

Lemma 5.6. Let K be a set, let t be an integer with t ≥ 2, and let Φ be a cyclic decomposition of (Kt,K, t). Let
j ∈ DiagΦ, and let A .=

⋂ j+t−1
i= j Φi. If hΦ,A ≥ 1, then there exist two nonempty subsets D and E of K \ A such that eitherΦ[ j−hΦ,A, j+hΦ,A −1] = KhΦ,A −1 × D × (K \ D)hΦ,A ,

Φ[ j+t−hΦ,A, j+t+hΦ,A −1] = KhΦ,A −1 × (K \ E) × EhΦ,A
(20)

or Φ[ j−hΦ,A, j+hΦ,A −1] = (K \ D)hΦ,A × D × KhΦ,A −1,

Φ[ j+t−hΦ,A, j+t+hΦ,A −1] = EhΦ,A × (K \ E) × KhΦ,A −1.
(21)

Proof. It follows from Lemmas 2.5 and 5.5.

Lemma 5.7. Let K be a set, let t and p be two positive integers, and let Φ be a cyclic decomposition of (Kt,K, t) with
period p.

(a) If t ≥ 2, then it holds 2 hΦ,a ≤ t for every a ∈ K.

(b) If t ≥ 3 and p > 2t, then it holds hΦ,a + hΦ,x ≤ t − 1 for every a, x ∈ K with LocΦ(at) , LocΦ(xt).

Proof. (a). Let j .= LocΦ(at). We only need to consider the case of hΦ,a ≥ 1 and so we can make use of Lemma 5.6.
If Eq. (20) holds, then we have Φ[ j, j+hΦ,a −1] = (K \ B)hΦ,a and Φ[ j+t−hΦ,a, j+t−2] = KhΦ,a −1, which gives [ j, j + hΦ,a −1] ∩
[ j + t − hΦ,a, j + t − 2] = ∅, namely either hΦ,a = 1 or j + hΦ,a −1 ≤ j + t − hΦ,a −1. If Eq. (21) holds, then we have
Φ[ j+1, j+hΦ,a −1] = KhΦ,a −1 and Φ[ j+t−hΦ,a, j+t−1] = (K \ C)hΦ,a , implying [ j + 1, j + hΦ,a −1] ∩ [ j + t − hΦ,a, j + t − 1] = ∅,
namely either hΦ,a = 1 or j+ hΦ,a −1 ≤ j+ t − hΦ,a. Because we have assumed t ≥ 2, in both cases we have 2 hΦ,a ≤ t.

(b). Assume, by way of contradiction, that hΦ,a + hΦ,x ≥ t. Without loss of generality, let hΦ,a ≥ hΦ,x. As t ≥ 3,
we now conclude that hΦ,a ≥ 2. Let j .= LocΦ(at) ∈ DiagΦ and A .=

⋂ j+t−1
i= j Φi. Note that hΦ,A = hΦ,a ≥ 2 and p > 2t.

Therefore, we can apply Lemma 5.6 and find that either Eq. (20) or Eq. (21) must hold.
Using the fact that either the first line of Eq. (20) or the first line of Eq. (21) must be valid, we shall show that

LocΦ(xt) = j − t. (22)

Let Ψi
.
= Φ2 j+t−1−i for every i ∈ Z/pZ. Thanks to the symmetry between Φ and Ψ as ensured by Lemma 5.2 (d), the

fact that either the second line of Eq. (20) or the second line of Eq. (21) must be valid, which indeed are the counterpart
of the fact on the first lines there by the symmetry between Φ and Ψ, will lead to LocΨ(xt) = LocΦ(xt) = j− t. But we
then derive j − t = LocΦ(xt) = 2 j − LocΨ(xt) = j + t in Z/pZ, violating the assumption of p > 2t.

It is clear that our goal now is to establish Eq. (22). Before moving on, we digress to make two observations.
Since LocΦ(xt) , j, Lemma 3.4 (a) shows that

LocΦ(xt) < [ j − t + 1, j + t − 1]. (23)

Lemma 5.2 (e), as well as t − hΦ,x ≤ hΦ,a, implies that

LocΦ(xhΦ,a ) ⊆ LocΦ(xt) + ⟨t − hΦ,a⟩. (24)

Assume first that x < B. Then, Lemma 5.6 tells us that xhΦ,a ∈ (K \ B)hΦ,a ⊆ Φ[ j, j+hΦ,a −1], and hence j ∈ LocΦ(xhΦ,a ).
This combined with Eq. (24) shows that LocΦ(xt) ∈ [ j − t + hΦ,a, j], which contradicts Eq. (23).

We now see that x ∈ B. It follows from Lemma 5.6 that xhΦ,a ∈ BhΦ,a ⊆ Φ[ j−hΦ,a, j−1], and hence j−hΦ,a ∈ LocΦ(xhΦ,a ).
This, along with Eq. (24), gives LocΦ(xt) ∈ [ j − hΦ,a −(t − hΦ,a), j − hΦ,a] = [ j − t, j − hΦ,a]. By virtue of Eq. (23) in
addition, Eq. (22) is thus obtained, and so we are done.
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6. Two lemmas on diagonal positions

This section aims to establish two constraints on the diagonal positions of a cyclic decomposition in some special
situations; see Lemmas 6.1 and 6.6. One is about the differences between elements from the diagonal positions, in
the same spirit as Lemma 3.4 (c); and the other is about the size of the diagonal positions, just like Lemmas 3.4 (a)
and 3.4 (b). Note that Lemma 6.1 has a short proof; but to reach Lemma 6.6, we will need several stepping stones
(Lemmas 6.2, 6.4 and 6.5 and Corollary 6.3).

Lemma 6.1. Let K be a set, let t be a positive integer, and let Φ be a cyclic decomposition of (Kt,K, t). If DiagΦ =
{i1, i2} ∈

(
Z/pZ

2

)
, then i2 − i1 , t + 1.

Proof. Let A .=
⋂i1+t−1

i=i1
Φi and B .=

⋂i2+t−1
i=i2

Φi. It follows from DiagΦ = {i1, i2} that A⊔B = K. Based on Corollary 3.6,
we haveΦi1+t−1∩Φi1+t = ∅ andΦi2−1∩Φi2 = ∅. Hence,Φi1+t ⊆ K\Φi1+t−1 ⊆ K\A = B andΦi2−1 ⊆ K\Φi2 ⊆ K\B = A.
As both Φi1+t and Φi2−1 are nonempty, the disjointness of A and B then illustrates that i1 + t , i2 − 1, or equivalently,
i2 − i1 , t + 1.

Lemma 6.2. Let K be a set, let t and p be integers with min{t, p} ≥ 2, and let Φ be a cyclic decomposition of (Kt,K, t)
with period p. Let I ⊆ Z/pZ be a set such that {i ∈ I : i − j ∈ ⟨t − 1⟩} , ∅ holds for every j ∈ Z/pZ. Then, there
exists a map α from I to Z such that

∑
i∈I αi1Φi = 1K ∈ RK .

Proof. As we demonstrate in the proof of Lemma 3.4, there is no loss in assuming that |K| < ∞.
Let G = Z1K ∩ (

∑
i∈I Z1Φi ), which is a cyclic subgroup of Z2K

under vector addition. Let g1K be the generator of
this group G. If g ∈ {±1}, then we are done. Otherwise, we can take s to be the smallest prime factor of g. Note that
s = 2 when g = 0. We now proceed to derive a contradiction.

It is clear that t1K ∈ SpanZ/sZ(1Φi : i ∈ I) only if t ≡ 0 (mod s). As a result, there exists a Z/sZ-linear function
f from (Z/sZ)K to Z/sZ satisfying

f (1A) =
∑
a∈A

f (1{a}) (25)

for every A ⊆ K, f (1Φi ) = 0 for every i ∈ I, and f (1K) , 0. For every j ∈ Z/pZ, we have

j+t−1∏
j′= j

f (1Φ j′ ) = 0, (26)

simply due to the existence of i ∈ I with i − j ∈ ⟨t − 1⟩. Since Φ is a cyclic decomposition of (Kt,K, t) with period p,
from Eqs. (25) and (26) we derive f (1K)t =

∑p
j=1

∏ j+t−1
j′= j f (1Φ j′ ) = 0, contradicting the fact that f (1K) , 0.

Corollary 6.3. Let K be a set, let t be an integer with t ≥ 2, let ℓ ∈ Z/(3tZ), and let Φ be a cyclic decomposition
of (Kt,K, t) with period 3t. Then we cannot find a partition of K into three nonempty subsets A, B and C such that
(Φℓ,Φt+ℓ,Φ2t+ℓ) = (C ⊔ B, A ⊔C, B ⊔ A).

Proof. Assume otherwise that the three sets A, B and C with the required property can be found. By Lemma 6.2,
there exists β ∈ Z{0,t,2t} such that 1A + 1B + 1C = 1K =

∑
i∈{0,t,2t} βi1Φi+ℓ = (β2t + βt)1A + (β0 + β2t)1B + (βt + β0)1C .

Since A, B,C are all nonempty and pairwise disjoint, an easy parity inspection on the values of β says that this is
impossible.

Lemma 6.4. Let K be a set, let t ≥ 3 be an integer, and let Φ be a cyclic decomposition of (Kt,K, t) with period 3t
and DiagΦ = {1, t + 1, 2t + 1}. Let A .=

⋂t
i=1Φi , ∅ and q .= hΦ,A. Assume that q ∈ [t − 2] and that

Φ[2t−q+1,2t+q] = (K \ D)q × D × Kq−1, (27)

where D is a nonempty proper subset of K. Then the following statements hold true.

(a) The set LocΦ(at−q−1) \ [q + 2] is contained in Y for all a ∈ A, where Y = {2t + 1, t + 2} ∪ {2t + 2, t + q + 2}.

(b) If Φ2t+1 ∩ A , ∅, then LocΦ(at−q−1) \ [q + 2] ⊆ {2t + 1, t + 2} for all a ∈ A.
19
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(c) If Φ2t ∩ A , ∅, then LocΦ(at−q−1) \ [q + 2] ⊆ {2t + 2, t + q + 2} for all a ∈ A.

(d) It holds either Φ2t ∩ A , ∅ or Φ2t+1 ∩ A , ∅, but not both.

Proof. (a). By Lemma 5.2 (b) for j = 1, it actually happens that

LocΦ(at−q−1) \ [q + 2] , ∅. (28)

Let us arbitrarily choose an element
θa ∈ LocΦ(at−q−1) \ [q + 2]. (29)

Let I1 = [q + 2], I2 = [q + 3, t + 1], I3 = [t + 3, t + q + 1], I4 = [t + q + 3, 2t], I5 = [2t + 3, 2t + q + 1] and
I6 = [2t + q + 2, 3t], where I3, I4 and I5 should be read as ∅ when q = 1, q = t − 2, q = 1, respectively. Note that
[3t] = I1 ∪ I2 ∪ {t + 2} ∪ I3 ∪ {t + q + 2} ∪ I4 ∪ {2t + 1, 2t + 2} ∪ I5 ∪ I6 = Y ∪ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6. In order to
derive θa ∈ Y , it suffices to demonstrate that θa < I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6.

From θa ∈ LocΦ(at−q−1) we deduce that
Φθa+i ∩ A ⊇ {a} , ∅ (30)

for all i ∈ ⟨t − q − 2⟩. By Lemma 5.2 (b) for j = 1, we have LocΦ(bat−q−1) ⊆ 1 + ⟨q⟩ = [q + 1] and LocΦ(at−q−1b) ⊆
1 + ⟨q⟩ = [q + 1] for all b ∈ A. It then follows from θa < [q + 2] that θa − 1 < [q + 1] ⊇ LocΦ(bat−q−1) and
θa < [q + 2] ⊇ LocΦ(at−q−1b) for all b ∈ A. Taking into account θa ∈ LocΦ(at−q−1) again, we see from them that

Φθa−1 ∩ A = ∅ and Φθa+t−q−1 ∩ A = ∅, (31)

respectively.
It follows from Eq. (29) that θa < I1. In view of Eq. (29) and q ≤ t− 2, an application of Lemma 5.2 (a) with j .= 1

and s .= q + 1 leads to θa < I2. According to Eqs. (30) and (31), we have a ∈ Φθa+t−q−2 \ Φθa+t−q−1, and hence

Φθa+t−q−2 , Φθa+t−q−1. (32)

By Eq. (27), it holds that Φ2t−q+1 = · · · = Φ2t = K \ D, which together with Eq. (32) claims that it is impossible to
have {θa + t − q − 2, θa + t − q − 1} ⊆ [2t − q + 1, 2t]. This implies that θa < I3. Applying Corollary 3.6 with i .= 2t + 1
yields Φ2t ∩ Φ2t+1 = ∅ ⊉ {a}. Henceforth, Eq. (30) tells us that

θa + ⟨t − q − 2⟩ ⊉ {2t, 2t + 1}. (33)

If I4 , ∅, we would have q ∈ [t − 3] and thus⋂
i∈I4

(i + ⟨t − q − 2⟩) = {2t, 2t + 1}. (34)

Putting together Eqs. (33) and (34), we see that θa < I4. Eq. (27) tells us that Φ2t+2 = · · · = Φ2t+q = K. But a look
at Eq. (31) also gives Φθa−1 , K, which then leads to θa < I5. It follows from Eq. (31) that ∅ , A = A \ Φθa+t−q−1 =

(
⋂

i∈[t]Φi)\Φθa+t−q−1. Therefore, it holds that θa+ t−q−1 < [t] (mod 3t), showing that θa < [2t+q+2, 3t+q+1] ⊇ I6.
This completes the proof of (a).

(b). If Φ2t+1 ∩ A , ∅ holds, then Eq. (31) shows that θa − 1 , 2t + 1 and θa + t − q − 1 , 2t + 1, hence
θa < {2t + 2, t + q + 2} follows. This along with (a) and Eq. (29) gives (b).

(c). If it holds Φ2t ∩A , ∅, then Eq. (27) tells us that Φ2t+1−q ∩A = · · · = Φ2t ∩A , ∅. A comparison with Eq. (31)
gives us θa − 1 , 2t and θa + t − q − 1 , 2t + 1 − q, namely θa < {2t + 1, t + 2}. Utilizing (a) and Eq. (29) additionally,
we now obtain (c).

(d). Since q ≥ 1, Lemma 5.2 (f) implies that Φ2t ⊔ Φ2t+1 = K ⊇ A. From q ∈ [t − 2] and t ≥ 3 we see that
{t + 2, 2t + 1} and {t + q + 2, 2t + 2} are disjoint subsets of [3t], and so can be viewed as disjoint subsets of Z/(3tZ) as
well. Therefore, thanks to Eq. (28), a combination of (b) and (c) proves (d).
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Figure 4: The cyclic decomposition Φ appeared in Lemma 6.5 and in Case 2 of the proof of Lemma 6.6.

Lemma 6.5. Let K be a set, let t be an integer with t ≥ 3, and let Φ be a cyclic decomposition of (Kt,K, t) with period
3t. Let us assume that DiagΦ = {1, t + 1, 2t + 1} and that hΦ,x takes a constant value q ∈ [⌊ t−1

2 ⌋] ⊆ [t − 2] for all
x ∈ K. Let A =

⋂
i∈[t]Φi, B =

⋂
i∈[t+1,2t]Φi, and C =

⋂
i∈[2t+1,3t]Φi, which surely constitute a partition of K into three

nonempty subsets. Let D1, D2, and D3 be three nonempty proper subsets of K such that

Φ[1−q,q] = (K \ D1)q × D1 × Kq−1,Φ[t−q+1,t+q] = (K \ D2)q × D2 × Kq−1,Φ[2t−q+1,2t+q] = (K \ D3)q × D3 × Kq−1. (35)

A pictorial description of Φ is given in Fig. 4. The following statements hold true.

(a) (Φ1,Φt+1,Φ2t+1) = (D1,D2,D3) , (A ⊔ B, B ⊔C,C ⊔ A).

(b) (Φ1,Φt+1,Φ2t+1) = (D1,D2,D3) , (A, B ⊔C,C ⊔ A).

(c) (Φ1,Φt+1,Φ2t+1) = (D1,D2,D3) , (A, B ⊔C,C).

(d) (Φ1,Φt+1,Φ2t+1) = (D1,D2,D3) , (A, B,C).

Proof. (a). If (D1,D2,D3) = (A⊔B, B⊔C,C⊔A), we can read from Eq. (35) that (Φ1,Φt+1,Φ2t+1) = (A⊔B, B⊔C,C⊔A),
violating Corollary 6.3.

(b). We assume by way of contradiction that (D1,D2,D3) = (A, B ⊔C,C ⊔ A). Then Eq. (35) tells us that

Φ[1−q,q] = (C ⊔ B)q × A × Kq−1,Φ[t−q+1,t+q] = Aq × (B ⊔C) × Kq−1,Φ[2t−q+1,2t+q] = Bq × (C ⊔ A) × Kq−1. (36)

Pick a ∈ A, and we aim to show that LocΦ(at−q−1) \ [q + 2] = ∅, which contradicts Lemma 5.2 (b). By Eq. (36),
we have Φ2t+1 ∩ A = (C ⊔ A) ∩ A = A , ∅. Note that q ∈ [t − 2], and that Eq. (35) implies Eq. (27). Therefore, we
can apply Lemma 6.4 (b) and derive that LocΦ(at−q−1) \ [q + 2] ⊆ {t + 2, 2t + 1}. To complete the proof, we need to
demonstrate that neither 2t + 1 nor t + 2 falls inside LocΦ(at−q−1).

For this purpose, we should pay attention to the subsequent easy consequences of Eq. (36):

Φ[3t−q,3t] ∩ Φ[t+1,t+q+1] ⊇
(
C × (C ⊔ B)q) ∩ (

(B ⊔C) × Kq−1 × B
)
= C × (B ⊔C)q−1 × B , ∅, (37)

Φ[2t−q+1,2t] ∩ Φ[t+1,t+q] = Bq ∩
(
(B ⊔C) × Kq−1) = Bq , ∅. (38)

Note that we have used Φ3t−q ⊇ C and that Φt+q+1 ⊇ B in Eq. (37).
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Observe that ∅ = Φ[2t+1,3t] ∩ Φ[q+2,t+q+1] = (Φ[2t+1,3t−q−1] ∩ Φ[q+2,t]) × (Φ[3t−q,3t] ∩ Φ[t+1,t+q+1]). In light of Eq. (37),
it holds Φ[2t+1,3t−q−1] ∩ Φ[q+2,t] = ∅. Therefore, from at−q−1 ∈ Φ[q+2,t] we then infer that at−q−1 < Φ[2t+1,3t−q−1], namely
2t + 1 < LocΦ(at−q−1).

Finally, let us consider

∅ = Φ[t+2,2t+1] ∩ Φ[q+2,t+q+1] = (Φ[t+2,2t−q] ∩ Φ[q+2,t]) × (Φ[2t−q+1,2t] ∩ Φ[t+1,t+q]) × (Φ2t+1 ∩ Φt+q+1).

In light of Eq. (38), this results in

∅ = (Φ[t+2,2t−q] ∩ Φ[q+2,t]) × (Φ2t+1 ∩ Φt+q+1). (39)

Note that
at−q−1 ∈ Φ[q+2,t] and a ∈ B ⊔ A = Φ2t+1. (40)

As the last step of the proof, let us assume t + 2 ∈ LocΦ(at−q−1) and derive a contradiction. It follows from t + 2 ∈
LocΦ(at−q−1) that

at−q−1 ∈ Φ[t+2,2t−q], (41)

and hence, as t + q + 1 ∈ [t + 2, 2t − q], we obtain

a ∈ Φt+q+1. (42)

By Eqs. (40) to (42), we have at−q ∈ (Φ[t+2,2t−q] ∩ Φ[q+2,t]) × (Φ2t+1 ∩ Φt+q+1), which is a desired contradiction with
Eq. (39).

(c). Assume by way of contradiction that (D1,D2,D3) = (A, B ⊔C,C). Then it follows from Eq. (35) that

Φ[1−q,q] = (C ⊔ B)q × A × Kq−1,Φ[t−q+1,t+q] = Aq × (B ⊔C) × Kq−1 and Φ[2t−q+1,2t+q] = (B ⊔ A)q ×C × Kq−1. (43)

Case 1. It holds q = 1.

Let Ψi
.
= Φ1−i for all i ∈ Z/(3tZ). Then Ψ is a cyclic decomposition of (Kt,K, t) with period 3t. Moreover, we

have ⋂
i∈[t]

Ψi =
⋂

i∈[2t+1,3t]

Φi = C,
⋂

i∈[t+1,2t]

Ψi =
⋂

i∈[t+1,2t]

Φi = B,
⋂

i∈[2t+1,3t]

Ψi =
⋂
i∈[t]

Φi = A,

and

Ψ[0,1] = Φ1 × Φ0 = A × (C ⊔ B),Ψ[t,t+1] = Φt+1 × Φt = (B ⊔C) × A,Ψ[2t,2t+1] = Φ2t+1 × Φ2t = C × (B ⊔ A).

Therefore, Ψ satisfies Eq. (35) with (D1,D2,D3) = (C, B ⊔ A, A ⊔C), violating (b).

Case 2. It holds q ≥ 2.

Pick a ∈ A. Since 2 ≤ q ≤ t − 2 and Φ2t ∩ A = (B ⊔ A) ∩ A = A , ∅, we can apply Lemma 6.4 (c) to find that
LocΦ(at−q−1) \ [q + 2] ⊆ {2t + 2, t + q + 2}. We proceed to show that LocΦ(at−q−1) ∩ {2t + 2, t + q + 2} = ∅, which will
be a desired contradiction with Lemma 5.2 (b) for j = 1.

Because of Φt+q+1 ⊇ B and q ≥ 2, we can infer from Eq. (43) that

Φ[2t−q+1,2t+1] ∩ Φ[0,q] =
(
(B ⊔ A)q ×C

)
∩

(
(C ⊔ B) × A × Kq−1) = B × A × (B ⊔ A)q−2 ×C , ∅, (44)

Φ[t+1,t+q+1] ∩ Φ[0,q] ⊇
(
(B ⊔C) × Kq−1 × B

)
∩

(
(C ⊔ B) × A × Kq−1) = (B ⊔C) × A × Kq−2 × B , ∅. (45)

Notice that ∅ = Φ[2t−q+1,3t−q] ∩Φ[0,t−1] = (Φ[2t−q+1,2t+1] ∩Φ[0,q])× (Φ[2t+2,3t−q] ∩Φ[q+1,t−1]). In view of Eq. (44), this
implies Φ[2t+2,3t−q] ∩ Φ[q+1,t−1] = ∅. Since at−q−1 ∈ At−q−1 ⊆ Φ[q+1,t−1], we then conclude that at−q−1 < Φ[2t+2,3t−q], that
is, 2t + 2 < LocΦ(at−q−1).

We further observe that ∅ = Φ[t+1,2t] ∩Φ[0,t−1] = (Φ[t+1,t+q+1] ∩Φ[0,q]) × (Φ[t+q+2,2t] ∩Φ[q+1,t−1]). This together with
Eq. (45) says that Φ[t+q+2,2t] ∩Φ[q+1,t−1] = ∅. Using at−q−1 ∈ Φ[q+1,t−1] again, we obtain at−q−1 < Φ[t+q+2,2t], resulting in
t + q + 2 < LocΦ(at−q−1), as wanted.
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(d). If (D1,D2,D3) = (A, B,C), then we will infer from Eq. (35) that (Φ0,Φt,Φ2t) = (C ⊔ B, A ⊔ C, B ⊔ A),
contradicting Corollary 6.3.

Lemma 6.6. Let K be a set, let t ≥ 3 be an integer, and let Φ be a cyclic decomposition of (Kt,K, t) with period 3t.
Then |DiagΦ| , 3.

Proof. Suppose, for the sake of contradiction, that |DiagΦ| = 3. According to Lemma 3.4 (a), we have DiagΦ =
{ℓ, ℓ + t, ℓ + 2t} for some ℓ ∈ DiagΦ. There is no loss of generality in assuming DiagΦ = {1, t + 1, 2t + 1}. We put
A .=

⋂t
i=1Φi, B .=

⋂2t
i=t+1Φi, and C .=

⋂3t
i=2t+1Φi. Clearly, it holds A ⊔ B ⊔ C = K and none of A, B, and C is empty.

By Lemma 5.4, there exists q ∈ N0 such that hΦ,x = q for all x ∈ K. It follows from Lemma 5.7 (b) that 2q ≤ t − 1.

Φt+2 Φt+3 · · · Φ2t Φ2t+1

. . .

t − 1

t − 1

t − 1

t − 1

(a) All (t − 1)-intervals in Z/(3tZ) that intersect {2t, 2t + 1}.

Φ1 Φ2 · · · Φt Φt+1

t

t

(b) All t-intervals in Z/(3tZ) ending at {t, t + 1}.

Figure 5: Case 1 of the proof of Lemma 6.6.

Case 1. q = 0.

Because A × · · · × A︸       ︷︷       ︸
t−1

×A ⊆ Φ[1,t] and A × · · · × A︸       ︷︷       ︸
t−1

×B ⊆ Φ[2,t+1], we know that A × · · · × A︸       ︷︷       ︸
t−1

×(A ⊔ B) is disjoint from⊔
i∈[3t]\[2]Φ[i,i+t−1]. This means that

LocΦ(at−1) ⊆ [t + 2, 2t + 1] ∪ [2] (46)

is valid for all a ∈ A. Corollary 3.6 asserts that Φ2t+1 ∩ Φ2t = Φt+1 ∩ Φt = ∅. Since Φ2t+1 ∪ Φ2t ⊇ C ∪ B = K \ A and
Φt+1∪Φt ⊇ B∪A = K\C, a further application of Lemma 5.2 (f) then demonstrates that we can find a ∈ A\(Φ2t∪Φ2t+1)
and c ∈ C \ (Φt ∪ Φt+1). It follows from a ∈ A \ (Φ2t ∪ Φ2t+1) that LocΦ(at−1c) < [t + 2, 2t + 1]; see Fig. 5(a). On the
other hand, it follows from c ∈ C \ (Φt ∪ Φt+1) that LocΦ(at−1c) < [2]; see Fig. 5(b). These two observations show us
that LocΦ(at−1c) < [t + 2, 2t + 1] ∪ [2]. But we surely have LocΦ(at−1c) ∈ LocΦ(at−1), thus yielding a contradiction
with Eq. (46).

Case 2. 1 ≤ q ≤ t−1
2 .

Let Ψi
.
= Φt+1−i for all i ∈ Z/(3tZ). By virtue of Lemmas 5.2 (d) and 5.6, we may, via replacing Φ with Ψ when

necessary, always assume that Φ satisfies Eq. (21) for all j ∈ DiagΦ; we depict a picture of Φ in Fig. 4. Especially, we
have

Φ0 ⊔ Φ1 = Φt ⊔ Φt+1 = Φ2t ⊔ Φ2t+1 = K. (47)

By the symmetry among the three elements 1, t + 1, and 2t + 1 of DiagΦ, Lemma 6.4 (d) indeed demonstrates the
following:

(i) It holds either Φt ∩C , ∅ or Φt+1 ∩C , ∅, but not both;

(ii) It holds either Φ0 ∩ B , ∅ or Φ1 ∩ B , ∅, but not both;

(iii) It holds either Φ2t ∩ A , ∅ or Φ2t+1 ∩ A , ∅, but not both.

In light of Eq. (47) and (i) to (iii), and that A ⊆ Φ1 ∩ Φt, B ⊆ Φt+1 ∩ Φ2t, and C ⊆ Φ2t+1 ∩ Φ3t, we then have
(Φ1,Φt+1,Φ2t+1) ∈ {A ⊔ B, A} × {B ⊔ C, B} × {C ⊔ A,C}. There are four cases to consider, depending on the value of
1B⊆Φ1 + 1C⊆Φt+1 + 1A⊆Φ2t+1 , which may be 3, 2, 1 or 0. Let Ψi = Φi+t and Ξi = Φi+2t for all i ∈ Z/(3tZ). By replacing
Φ by Ψ or Ξ if necessary, these four cases are dealt with already in Lemmas 6.5 (a) to 6.5 (d), respectively. Indeed, as
we know from Lemma 6.5, they are all impossible, thus completing our proof.
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7. Possible periods ≤ 4t − 1 of t-hydras

Definition 7.1 (Three projections of U). For any (t, p) ∈ N × N, designate by S(t, p) the set of positive integers k
such that there is a cyclic decomposition of ([k]t, [k], t) with period p, namely S(t, p) = {k ∈ N : p ∈ P(k, t)}. For
any (p, k) ∈ N × N, designate by T (p, k) the set of positive integers t such that there is a cyclic decomposition of
([k]t, [k], t) with period p, namely T (p.k) = {t ∈ N : p ∈ P(k, t)} = {t ∈ N : k ∈ S(t, p)}. We may think of P, S, T as
three projections ofU ∩ N3 along its first, second and third axes, namely the period-axis, space-axis and time-axis.

Lemma 7.2. S(3, 9) = ∅.

Proof. Assume for a contradiction that there exists a set K and a cyclic decomposition Φ of (K3,K, 3) with period 9.
Up to translation, we may assume that 1 ∈ DiagΦ. Combining Lemmas 3.4 and 6.6 yields that DiagΦ = {1, x} for

some x ∈ {4, 5, 6, 7}. Lemma 6.1 excludes the possibility of x ∈ {5, 6}. As a result, we have DiagΦ ∈
{
{1, 4}, {1, 7}

}
.

After making a reflection, if necessary, we may assume that DiagΦ = {1, 4}.
We set A .=

⋂3
i=1Φi and B .=

⋂6
i=4Φi. We apply Corollary 3.6 for i = 1 and i = 4, respectively, and then find

that Φ7 ⊆ K \ Φ6 ⊆ A and Φ9 ⊆ K \ Φ1 ⊆ B. This means that Φ7 × Φ9 ⊆ A × B ⊆ (Φ2 × Φ4) ∩ (Φ3 × Φ5). Since
Φ2×Φ3×Φ4,Φ3×Φ4×Φ5 andΦ7×Φ8×Φ9 are pairwise disjoint, we conclude thatΦ8 = Φ8∩K = Φ8∩(Φ3∪Φ4) = ∅,
which is absurd.

Lemma 7.3. S(3, 10) = ∅.

Proof. We assume the opposite, that there is a cyclic decomposition Φ of (K3,K, 3) with period 10 for some set K. In
view of Lemma 3.4, we may, up to translation of Φ, consider only the following four cases.

Case 1. DiagΦ = {1, 4}.

We set A .=
⋂3

i=1Φi and B .=
⋂6

i=4Φi. It follows from Corollary 3.6 that Φ3 ∩ Φ4 = ∅, and so we have Φ3 ⊔ Φ4 =

A ⊔ B = K. Applying Lemmas 5.2 (f) and 5.2 (g) for j = 4 and j = 1, respectively, we thus find that hΦ,B ≥ 1 and
hΦ,A ≥ 1. This enables us to get Φ7 = Φ1 = A and Φ6 = Φ10 = B from Lemma 5.3 (e). According to Lemma 5.3 (a),
Φ10 ∩ B , ∅ leads to Φ9 ⊆ K \ B = A and Φ7 ∩ A , ∅ leads to Φ8 ⊆ K \ A = B. At this moment, we see that
Φ[6,8] ∩ Φ[8,10] = (Φ6 ∩ Φ8) × (Φ7 ∩ Φ9) × (Φ8 ∩ Φ10) = Φ8 × Φ9 × Φ8 , ∅, which is ridiculous.

Case 2. DiagΦ = {1, 5}.

By Lemma 6.1, this case will never occur.

Case 3. DiagΦ = {1, 6}.

We set A .=
⋂3

i=1Φi and B .=
⋂8

i=6Φi. Obviously, it holds A⊔B = K. By symmetry, let us assume that hΦ,A ≤ hΦ,B.

If hΦ,A ≥ 1, Lemma 5.3 (e) claims that Φ6 = Φ8 = Φ10 = Φ4 = B and Φ5 = Φ9 = Φ1 = Φ3 = A, which means that
Φ[3,5] = A × B × A = Φ[9,11], violating the definition of a cyclic decomposition.

Let us move on to the case of hΦ,A = 0. Corollary 3.6 shows that

Φi ∩ Φi+1 = ∅ for all i ∈ {3, 5, 8, 10}. (48)

Especially, we have Φ9 ⊆ K \ Φ8 ⊆ K \ B = A. Pick a ∈ Φ9 ⊆ A arbitrarily. Note that 7 < LocΦ(a2) as it would
imply a3 ∈ Φ[7,9] ∩ Φ[1,3]. From Eq. (48) we can read Φ5 ∩ Φ6 = ∅ and so Φ5 ⊆ K \ Φ6 ⊆ K \ B = A. Therefore, a
consequence of 6 ∈ LocΦ(a2) is thatΦ[5,7]∩Φ[1,3] ⊇ Φ5×a2 , ∅, which is impossible. Moreover, a direct consequence
of Eq. (48) is that LocΦ(a2) ∩ {3, 5, 8, 10} = ∅. Due to hΦ,A = 0, Lemma 5.2 (e) asserts that LocΦ(a2) \ [2] , ∅. Take
ℓ ∈ LocΦ(a2)\ [2]. By now, we have seen that ℓ ∈ {4, 9} ⊆ Z/10Z. The assumption of ℓ = 4 leads to a3 ∈ Φ[3,5]∩Φ[1,3]
and the assumption of ℓ = 9 leads to a3 ∈ Φ[9,1] ∩ Φ[1,3], neither of which is compatible with the definition of a cyclic
decomposition.

Case 4. DiagΦ = {1, 4, 7}.

We set A .=
⋂3

i=1Φi, B .=
⋂6

i=4Φi, and C .=
⋂9

i=7Φi, which surely form a partition of K. Lemma 5.4 shows that
hΦ,x takes a constant value q for all x ∈ K. We claim that

q ≥ 1. (49)
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By Corollary 3.6, it holds
Φi ∩ Φi+1 = ∅ for all i ∈ {3, 6, 9, 10}. (50)

Especially, we have Φ6 ∩ Φ7 = ∅. Therefore, applying Lemma 5.2 (f) for j = 7, (49) is equivalent to Φ6 ∪ Φ7 = K.

Assume, on the contrary, that Eq. (49) fails. This means that ∅ , K \(Φ6∪Φ7) ⊆ K \(B∪C) = A and hence we can
find a ∈ A \ (Φ6 ∪Φ7). By Lemma 5.2 (e) for j = 1, it also follows from q = 1 the existence of an ℓ ∈ LocΦ(a2) \ [2].
Note that a < Φ6 ∪ Φ7 ensures that ℓ < {5, 6, 7}. In light of Eq. (50), it holds

ℓ < {3, 6, 9, 10},

∅ = Φ3 ∩ Φ4 ⊇ A ∩ Φ4, (51)

and
Φ10 ⊆ (K \ Φ1) ∩ (K \ Φ9) ⊆ (K \ A) ∩ (K \C) = B. (52)

It is direct from Eq. (51) that ℓ , 4. We infer from Eq. (52) that Φ4 ⊇ B ⊇ Φ10 and hence Φ4 ∩ Φ10 = Φ10 , ∅.
By virtue of Φ[2,4] ∩ Φ[8,10] = ∅, we then further derive (A × A) ∩ Φ[8,9] ⊆ Φ[2,3] ∩ Φ[8,9] = ∅, which gives ℓ , 8. To
conclude, we have now excluded the possibility of ℓ = x for all x ∈ Z/10Z, which is a contradiction. This ends the
proof of (49), as wanted.

Thanks to Lemma 5.2 (f) for j = 1, (49) tells us that Φ10 ⊔ Φ1 = K. Since 0 ∈ (Z/10Z) \ {4, 5, 6}, we see from
Eq. (52) and Lemma 5.3 (c) that

Φ10 = B. (53)

Applying Lemma 5.2 (f) for j = 1 and Lemma 5.2 (g) for j = 7, respectively, we know from Eq. (49) that

Φ1 = K \ Φ10 = A ∪C and Φ9 = K \ Φ10 = A ∪C. (54)

Having Eqs. (49) and (54) in hand, it follows from Lemma 5.3 (a) that Φ8 ∩ A = ∅. In addition, Eq. (54) also shows
that Φ7 ∩ Φ9 ⊇ C and Φ9 ∩ Φ11 = A ∪ C, which allows us to conclude from Eq. (53) and Φ[7,9] ∩ Φ[9,11] = ∅ that
∅ = Φ8 ∩ Φ10 = Φ8 ∩ B. Therefore, it holds that C ⊆ Φ8 ⊆ (K \ B) ∩ (K \ A) = C, proving that Φ8 = C. The same
conclusion surely applies to the map Ψ with Ψi = Φ−i for all i ∈ Z/10Z, giving us Φ2 = Ψ8 = A. Accordingly, we
arrive at

Φ8 ∪ Φ2 = C ∪ A. (55)

In view of Eq. (50), we have Φ3 ∩ Φ4 = Φ6 ∩ Φ7 = ∅, and therefore Φ3 ∩ B = ∅ and B ∩ Φ7 = ∅. Considering that
B .=

⋂6
i=4Φi, this along with Eqs. (53) to (55) shows that LocΦ(b) = {4, 5, 6, 10} for all b ∈ B. By Lemma 2.4, we thus

obtain ⊔
i∈{5,6,7,10}

Φ[i,i+1] = K2. (56)

For all i ∈ Z/10Z, let di
.
= DM(K,K;Φi,Φi+1) and observe that di = 2. As

∑
i∈{5,6,7,10} 2−di = 1, it follows from

Theorem 2.8 and Eq. (56) that, for the pairs (Φ7,Φ8) and (Φ1,Φ2), we should have either Φ7 = K \Φ1 or Φ8 = K \Φ2.
However, Eq. (54) says that Φ7 ∩ Φ1 = Φ7 ∩ (A ∪ C) ⊇ C , ∅, whereas Eq. (55) asserts that Φ8 ∪ Φ2 = C ∪ A , K.
This contradiction then completes the proof.

Lemma 7.4. S(3, 11) = ∅.

Proof. For the sake of contradiction, suppose there is a cyclic decomposition Φ of (K3,K, 3) with period 11 for some
set K. Up to translation of Φ, Lemma 3.4 allows us to restrict our attention to the following five cases.

Case 1. DiagΦ = {1, 5}.

This is impossible by Lemma 6.1.

Case 2. DiagΦ = {1, 4}.

We set A .=
⋂3

i=1Φi and B .=
⋂6

i=4Φi, which together form a partition of K. From Corollary 3.6 we deduce
that Φ0 ⊆ B and Φ7 ⊆ A. We next see from Φ[6,8] ∩ Φ[0,2] = ∅ that Φ8 ⊆ B. We further examine the fact that
Φ[7,9] ∩Φ[3,5] = ∅ and can tell from it that Φ9 ⊆ A. Finally, for the value of Φ10, Φ[5,7] ∩Φ[10,12] = ∅ requires Φ10 ⊆ A,
while Φ[9,11] ∩ Φ[2,4] = ∅ forces Φ0 ⊆ B; see Fig. 6(a). This is the desired contradiction.

25



/ 00 (2024) 1–34 26

Φ0
Φ1

Φ2

Φ3

Φ4

Φ5Φ6

Φ7

Φ8

Φ9

Φ10

⊇

⊇

⊇

⊇

⊇⊇

⊇

⊇

⊇

⊇

A

A

A

B

BB

A

A

B

B

?

(a) DiagΦ = {1, 4}.
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(b) DiagΦ = {1, 6}.

Figure 6: Case 2 and Case 3 in the proof of Lemma 7.4.

Case 3. DiagΦ = {1, 6}.

Let A .=
⋂3

i=1Φi and B .=
⋂8

i=6Φi, which together form a partition of K. Corollary 3.6 shows Φ0 ⊆ B,Φ4 ⊆ B,
Φ5 ⊆ A and Φ9 ⊆ A. Therefore, from Φ[7,9] ∩ Φ[10,12] = ∅ we derive Φ10 ⊆ A, while from Φ[0,2] ∩ Φ[8,10] = ∅ we get
Φ10 ⊆ B; see Fig. 6(b). This implies Φ10 = ∅, in conflict with the definition of a cyclic decomposition.

Case 4. DiagΦ = {1, 4, 7}.

By Lemma 5.4, hΦ,x takes a constant value for all x ∈ K, say q. Let us partition K into three nonempty sets,

A .=
3⋂

i=1

Φi, B .=
6⋂

i=4

Φi, and C .=
9⋂

i=7

Φi (57)

It follows from Corollary 3.6 that

Φ0 ∩ Φ1 = Φ3 ∩ Φ4 = Φ6 ∩ Φ7 = Φ9 ∩ Φ10 = ∅. (58)

Case 4.1. q = 0.
Recall from Eq. (58) that Φ6 ∩ Φ7 = ∅. Hence, in view of Definition 5.1, q = 0 along with 7 ∈ DiagΦ means that

B ∪ C ⊆ Φ6 ∪ Φ7 ⊊ K. This allows us to take a ∈ A \ (Φ6 ∪ Φ7). From a < Φ6 ∪ Φ7 we obtain 5, 6, 7 < LocΦ(a2).
From Eq. (58) we derive {3, 6, 9, 11} ∩ LocΦ(a2) = ∅. Taking into account ∅ = Φ[1,3] ∩ Φ[10,12] = Φ[1,3] ∩ Φ[3,5], we
see that 10, 4 < LocΦ(a2). By virtue of A ⊆ Φ3, B ⊆ Φ4,C ⊆ Φ9, it holds Φ10 = Φ10 ∩ K = Φ10 ∩ (Φ3 ∪ Φ4 ∪ Φ9).
Observe from Eq. (58) that Φ9 ∩ Φ10 = ∅, which shows that either Φ10 ∩ Φ3 , ∅ or Φ10 ∩ Φ4 , ∅. Considering that
Φ[8,10] ∩ Φ[1,3] = Φ[8,10] ∩ Φ[2,4] = ∅, we now conclude that either Φ[8,9] ∩ Φ[1,2] = ∅ or Φ[8,9] ∩ Φ[2,3] = ∅. Since
a2 ∈ Φ[1,2] ∩ Φ[2,3], we thus find that 8 < LocΦ(a2). The above analysis shows that LocΦ(a2) \ [2] = ∅. But, by
Lemma 5.2 (b) for j = 1, we have LocΦ(a2) \ [2] , ∅. This is a desired contradiction.

Case 4.2. q ≥ 1.
Since q ≥ 1, it follows from Lemmas 5.2 (f) and 5.2 (g) that

Φ0 ⊔ Φ1 = Φ3 ⊔ Φ4 = Φ6 ⊔ Φ7 = Φ9 ⊔ Φ10 = K; (59)

applying Lemma 5.3 (b) for ℓ = 10 and j ∈ {1, 4, 7} gives Φ10∩Φ11∩A = Φ10∩Φ11∩B = Φ10∩Φ11∩C = ∅, namely

Φ10 ∩ Φ11 = ∅; (60)

while applying Lemma 5.3 (b) for ℓ = 8 and j ∈ {1, 4} gives

C ⊆ Φ7 ∩ Φ8 ⊆ K \ (A ∪ B) = C and C ⊆ Φ8 ∩ Φ9 ⊆ K \ (A ∪ B) = C; (61)

and applying Lemma 5.3 (b) for ℓ = 2 and j ∈ {4, 7} gives

A ⊆ Φ1 ∩ Φ2 ⊆ K \ (B ∪C) = A and A ⊆ Φ2 ∩ Φ3 ⊆ K \ (B ∪C) = A. (62)
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An application of Lemma 5.3 (c) and Eqs. (57) and (59) leads toΦ1 ∈ {A, A ⊔ B, A ⊔C},Φ0 ∈ {B ⊔C,C, B},Φ3 ∈ {A, A ⊔C},Φ4 ∈ {B ⊔C, B},
Φ6 ∈ {B, B ⊔ A},Φ7 ∈ {C ⊔ A,C},Φ9 ∈ {C,C ⊔ A,C ⊔ B},Φ10 ∈ {A ⊔ B, B, A}.

(63)

Eqs. (59) and (60) implies that Φ11 ⊆ K \ Φ10 = Φ9 and Φ10 ⊆ K \ Φ11 = Φ1. Thanks to Φ[9,11] ∩ Φ[0,2] = ∅ and
Φ[8,10] ∩ Φ[10,12] = ∅, this allows us to get

Φ0 ∩ Φ2 = ∅ and Φ8 ∩ Φ10 = ∅, (64)

respectively. It follows from Eqs. (59), (61), (62) and (64) thatΦ2 = Φ2 ∩ (Φ0 ⊔ Φ1) = (Φ2 ∩ Φ0) ⊔ (Φ2 ∩ Φ1) = Φ2 ∩ Φ1 = A,
Φ8 = Φ8 ∩ (Φ9 ⊔ Φ10) = (Φ8 ∩ Φ9) ⊔ (Φ8 ∩ Φ10) = Φ8 ∩ Φ9 = C.

(65)

Comparing Eqs. (60) and (63), we see that either Φ10 = A or Φ0 = C. Up to replacing Φ by its reflection Ψ with
Ψi = Φ10−i for all i ∈ Z/11Z, we may assume that Φ0 = C happens. In view of Eqs. (59), (63) and (65), we can depict
the current situation in Fig. 7, from which we can see that LocΦ(aba) ∈ {3, 5} for any a ∈ A and b ∈ B. For any a ∈ A
and b ∈ B, from LocΦ(aba) = 5 we will easily deduce aba ∈ Φ[3,5]∩Φ[5,7], which is absurd. Therefore, LocΦ(aba) = 3
for all (a, b) ∈ A × B. This then tells us that A ⊆ Φ5 and then Φ7 = C. By Eq. (59), Φ7 = C gives Φ6 = B ⊔ A, and
so Φ5 ∩ Φ6 ∩ A ⊇ A ∩ (B ⊔ A) ∩ A = A. Finally, by Lemma 5.3 (b), it should happen Φ5 ∩ Φ6 ∩ A = ∅, which is the
required contradiction.
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=
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A ∪ B

=A
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{B, B ∪C}

∈

{B, B ∪ A}

∈

{C,C ∪ A}

=

C
∈{C,C ∪ A,C ∪ B}

∈

{A, B, A ∪ B}

Figure 7: Case 4.2 in the proof of Lemma 7.4.

Case 5. DiagΦ = {1, 4, 8}.

We set A .=
⋂3

i=1Φi, B .=
⋂6

i=4Φi and C .=
⋂10

i=8Φi. Corollary 3.6 implies

Φi ∩ Φi+1 = ∅ for all i ∈ {3, 6, 7, 10, 11}. (66)

As a consequence of Eq. (66), we have

Φ7 ⊆ (K \ Φ6) ∩ (K \ Φ8) ⊆ A (67)

and
Φ0 ⊆ (K \ Φ1) ∩ (K \ Φ10) ⊆ B. (68)

Case 5.1. hΦ,A ≥ 1.
It follows from Lemma 5.4 that hΦ,B = hΦ,A ≥ 1. This enables us utilize Lemmas 5.2 (f) and 5.2 (g) and find that

Φ6 ⊔ Φ7 = K,Φ0 ⊔ Φ1 = K, and Φ3 ⊔ Φ4 = K. (69)

Having in mind Eqs. (67) and (68) additionally, the first two equalities in Eq. (69) yield

Φ6 ∩ Φ1 = K \ (Φ7 ∪ Φ0) ⊇ K \ (A ∪ B) = C. (70)
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We also read from Eq. (68) that Φ5 ∩ Φ0 ⊇ B ∩ Φ0 = Φ0 , ∅. Since Φ[4,6] ∩ Φ[10,12] = ∅, this along with Eq. (70)
shows that ∅ = Φ4 ∩ Φ10 ⊇ Φ4 ∩ C, and thus Φ4 ∩ C = ∅. The third equality in Eq. (69), combined with Φ4 ∩ C = ∅,
then gives

Φ8 ∩ Φ3 = Φ8 ∩ (K \ Φ4) ⊇ C. (71)

Recall from Eq. (67) that
Φ7 ∩ Φ2 ⊇ Φ7 ∩ A = Φ7. (72)

At last, we conclude from Eqs. (70) to (72) that Φ[6,8] ∩ Φ[1,3] ⊇ C × Φ7 ×C , ∅, which is a contradiction.

Case 5.2. hΦ,A = 0.
Pick a ∈ A. As we have hΦ,A = 0, Lemma 5.2 (e) guarantees the existence of ℓ ∈ LocΦ(a2) \ [2]. It follows from

Eq. (66) that ℓ < {3, 6, 7, 10, 11}, and that ∅ = Φ3 ∩ Φ4 ⊇ A ∩ Φ4, which gives ℓ , 4. By Eq. (67), we tell from
Φ[1,3] ∩ Φ[5,7] = ∅ and Φ[1,3] ∩ Φ[7,9] = ∅ that ℓ , 5 and ℓ , 8, respectively. To sum up, it only remains the possibility
of ℓ = 9. For any b ∈ Φ0, ℓ = 9 together with Eq. (68) would imply a2b ∈ Φ[2,4] ∩ Φ[9,11]. This contradiction ends the
proof.

Lemma 7.5. S(4, 12) = ∅.

Proof. Let K be a set and let Φ be a cyclic decomposition of (K4,K, 4) with period 12. Let us work towards a
contradiction.

By Lemma 3.5 (b) and Theorem 2.11, we haveΦ#
< ≥ 3 andΦ#

< ≤
⌊
log2(12)

⌋
= 3, respectively. Hence, the deflation

number of Φ is exactly three. In view of Lemma 2.5, we may thus assume that Φi = K if and only if i ∈ {3, 7, 11}.
By Corollary 3.6, we then obtain DiagΦ ∩{3, 7, 11} = DiagΦ ∩{0, 4, 8} = ∅. Up to equivalence, there is thus no loss of
generality in assuming that 1 ∈ DiagΦ. Furthermore, we can apply Lemmas 3.4 and 6.6 and find that |DiagΦ| = 2 and
that 1 ∈ DiagΦ ⊆ {1, 5, 6, 9}. Since 1 ∈ DiagΦ, it then follows from Lemma 6.1 that DiagΦ ∈

{
{1, 5}, {1, 9}

}
. Let Ψ be

the reflection of Φ such that Ψi = Φ2−i for all i ∈ Z/12Z. Replacing Φ by Ψ if necessary, we can always assume that
DiagΦ = {1, 5}.

Set B .=
⋂8

i=5Φi and C .=
⋂4

i=1Φi. Utilizing Lemma 3.5 (a) for i .= 5 and j .= 2 yields j1 ∈ Φ5
< = {0, 1, 3} such

that Φ7+ j1 ∩ B = ∅. Since B ⊆ Φ7 ∩ Φ8, we must have j1 = 3 and thus Φ10 ∩ B = ∅ follows. We continue to apply
Lemma 3.5 (a) for i .= 1 and j .= 3 and then get the existence of j2 ∈ Φ1

< = {0, 1, 3} such that Φ1−3+ j2 ∩ C = ∅. Since
Φ−2+1 = Φ11 = K ⊇ C and Φ−2+3 = Φ1 ⊇ C, we must have j2 = 0 and thus Φ10 ∩ C = ∅. We have seen now
Φ10 ∩ B = Φ10 ∩C = ∅. But B ⊔C = K, and so Φ10 = ∅ follows, which is a contradiction.

Lemma 7.6. S(6, 18) = ∅.

Proof. Let us assume that the statement is false, namely there is a cyclic decomposition Φ of (K6,K, 6) with period
18 for some set K.

By Lemmas 3.4 (b), 3.4 (c) and 6.6, we have |DiagΦ| = 2. Up to a possible translation of Φ, we may assume that
DiagΦ = {1, ℓ} for some ℓ ∈ [2, 10]. From Lemmas 3.4 (a) and 6.1 we then conclude that

DiagΦ ∈
{
{1, 7}, {1, 9}, {1, 10}

}
. (73)

By Lemma 3.5 (a) for (i, j) .= (1, 1), there is a j1 ∈ Φ1
< ⊆ ⟨5⟩ such that j1 − 5 = j + j1 − t ∈ Φ1

< ⊆ ⟨5⟩. This forces
j1 = 5. Note that Corollary 3.6 has ensured that 0 ∈ Φ1

<. Thus, we indeed have

{0, 5} ⊆ Φ1
<. (74)

By applying Lemma 3.5 (a) for (i, j) .= (1, 2), we find the existence of a j1 ∈ Φ1
< ⊆ ⟨5⟩ satisfying j1 − 4 = j + j1 − t ∈

Φ1
< ⊆ ⟨5⟩. Therefore, it holds j1 ∈ {4, 5}. As {4, 1} = {4, 5 − 4}, we see that

{4, 1} ∩ Φ1
< , ∅. (75)

Applying Lemma 3.5 (a) for (i, j) .= (1, 4) yields some j1 ∈ Φ1
< ⊆ ⟨5⟩ such that j1 − 2 = j + j1 − t ∈ Φ1

< ⊆ ⟨5⟩. It
follows that ( j1 − 2, j1) ∈ {(0, 2), (1, 3), (2, 4), (3, 5)}, and hence

{2, 3} ∩ Φ1
< , ∅. (76)
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Theorem 2.11 asserts Φ#
< ≤

⌊
log2(18)

⌋
= 4. This combined with Eqs. (74) to (76) shows that Φ#

< = 4 and ⟨5⟩ \ Φ1
< ∈{

{4, 2}, {1, 2}, {4, 3}, {1, 3}
}
. By Definition 2.1 and Lemma 2.5, we have

{i ∈ Z/18Z : Φi = K} =


{3, 5, 9, 11, 15, 17}, if ⟨5⟩ \ Φ1

< = {4, 2},
{2, 3, 8, 9, 14, 15}, if ⟨5⟩ \ Φ1

< = {1, 2},
{4, 5, 10, 11, 16, 17}, if ⟨5⟩ \ Φ1

< = {4, 3},
{2, 4, 8, 10, 14, 16}, if ⟨5⟩ \ Φ1

< = {1, 3}.

(77)

Moreover, Corollary 3.6 and Eqs. (73) and (77) demonstrate that

DiagΦ =


{1, 7}, if ⟨5⟩ \ Φ1

< = {4, 2},
{1, 7}, if ⟨5⟩ \ Φ1

< = {1, 2},
{1, 7} or {1, 9}, if ⟨5⟩ \ Φ1

< = {4, 3},
{1, 7}, if ⟨5⟩ \ Φ1

< = {1, 3}.

(78)

Eqs. (77) and (78) allow us to divide our further analysis into the following five cases.

Case 1. Φ1
< = {0, 1, 3, 5} and DiagΦ = {1, 7}.

We set A .=
⋂6

i=1Φi and B .=
⋂12

i=7Φi. By applying Lemma 3.5 (a) with (i, j) .= (7, 2), we find the existence of a
j1 ∈ Φ7

< = {0, 1, 3, 5} such that j1 − 4 = j1 + j − t ∈ Φ7
< = {0, 1, 3, 5} and that Φi+ j1+ j ∩ B = ∅. This forces j1 = 5,

and hence Φ14 = Φ7+5+2 ⊆ K \ B = A. By putting (i, j) .= (1, 5) in Lemma 3.5 (a), we obtain the existence of a
j2 ∈ Φ1

< = {0, 1, 3, 5} such that j2 + 1 = j2 − j + t ∈ Φ1
< = {0, 1, 3, 5} and that Φi+ j2− j ∩ A = ∅. This forces j2 = 0, and

hence Φ14 = Φ1+0−5 ⊆ K \ A = B. As a result, it holds Φ14 = ∅, yielding a contradiction!

Case 2. Φ1
< = {0, 3, 4, 5} and DiagΦ = {1, 7}.

We set A .=
⋂6

i=1Φi and B .=
⋂12

i=7Φi. Applying Lemma 3.5 (a) for (i, j) .= (7, 4), we conclude that there exists a
j1 ∈ Φ7

< = {0, 3, 4, 5} such that j1 − 2 = j1 + j − t ∈ Φ7
< = {0, 3, 4, 5} and that Φi+ j1+ j ∩ B = ∅. It is obvious that we

must have j1 = 5, and hence Φ16 = Φ7+5+4 ⊆ K \ B = A. Putting (i, j) .= (1, 3) in Lemma 3.5 (a) yields the existence
of a j2 ∈ Φ1

< = {0, 3, 4, 5} such that j2 + 3 = j2 − j + t ∈ Φ1
< = {0, 3, 4, 5} and that Φi+ j2− j ∩ A = ∅. Note that the only

possibility is j2 = 0, and hence Φ16 = Φ1+0−3 ⊆ K \ A = B. At this moment, we find that Φ16 = ∅, violating the fact
that Φ is a cyclic decomposition.

Case 3. Φ1
< = {0, 1, 2, 5} and DiagΦ = {1, 7}.

Let Ψ be a reflection of Φ satisfying Φi = Ψ13−i for all i ∈ Z/18Z. Applying the conclusion in Case 2 on the cyclic
decomposition Ψ, we see that the assumption in this case will cause a contradiction.

Case 4. Φ1
< = {0, 1, 2, 5} and DiagΦ = {1, 9}.

We set A .=
⋂6

i=1Φi and B .=
⋂14

i=9Φi. By substituting (i, j) .= (1, 2) in Lemma 3.5 (a), we find the existence of
j1 ∈ Φ1

< = {0, 1, 2, 5} such that j1 − 4 = j1 + j − t ∈ Φ1
< = {0, 1, 2, 5} and that Φi+ j1+ j ∩ A = ∅. This forces j1 = 5, and

hence Φ8 = Φ1+5+2 ⊆ B. Consequently, for any b ∈ B it holds b6 ∈ Φ[8,13] ∩ Φ[9,14] = ∅, which is absurd.

Case 5. Φ1
< = {0, 2, 4, 5} and DiagΦ = {1, 7}.

Let Ψ be a reflection of Φ satisfying Φi = Ψ13−i. We can reach a contradiction by utilizing the analysis in Case 1
on the cyclic decomposition Ψ, and thus we are done.

Lemma 7.7. S(7, 21) = ∅.

Proof. To the contrary, suppose that we have a cyclic decomposition Φ of (K7,K, 7) with period 21 for some set K.
Without loss of generality, we may assume that 1 ∈ DiagΦ.

Theorem 2.11 implies that Φ#
< ≤

⌊
log2(21)

⌋
= 4. According to Lemma 3.5 (a), the possible value of Φ1

< has many
additional constraints; a computer enumeration based on Lemma 3.5 (a) now shows that Φ1

< ∈
{
{0, 1, 4, 6}, {0, 2, 5, 6}

}
.

Up to reflection, let us suppose that Φ1
< = {0, 1, 4, 6}.
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Take a ∈
⋂

i∈[7]Φi. By applying Lemma 3.5 (a) with i .= 1 and j = 1, 2, 5, respectively, we find the existence of
j1 ∈ Φ1

< = {0, 1, 4, 6} such that j1 + j − t ∈ Φ1
< = {0, 1, 4, 6} and that a < Φi+ j1+ j. In all cases, we have j1 = 5, and

hence
a < Φ8 ∪ Φ9 ∪ Φ12. (79)

In addition, by applying Lemma 3.5 (a) with i .= 1 and j ∈ {1, 3, 6}, we find the existence of j2 ∈ Φ1
< = {0, 1, 4, 6} such

that j2 − j + t ∈ Φ1
< = {0, 1, 4, 6} and that a < Φi+ j2− j. In all cases, we conclude that j2 = 0, and hence

a < Φ16 ∪ Φ19 ∪ Φ21. (80)

Taking Eqs. (79) and (80) into account, we find that LocΦ(a4) ⊆ [4]. By Lemma 5.2 (b), this implies that

hΦ,a ≥ 3. (81)

On the other hand, let di
.
= DM(K,K,K;Φi,Φi+1,Φi+2) for all i ∈ Z/(21Z). It follows from Φ1

< = {0, 1, 4, 6} and
Lemma 2.5 that d5 = d6 = d8 = 2 and d7 = 3, and hence

∑
i∈{5,6,7,8} 2−di < 1. Thereby, we derive from Theorem 2.8

that
⊔

j∈⟨3⟩(Φ j+5 × Φ j+6 × Φ j+7) , K3. By Lemma 5.2 (g), this means that hΦ,a ≤ 2. This violates Eq. (81) and so the
proof is completed.

Lemma 7.8. S(11, 33) = ∅.

Proof. Let Φ be a cyclic decomposition of (K11,K, 11) with period 33. According to Lemma 3.5 (b) and Theo-
rem 2.11, it holds Υ(11) ≤ Φ#

< ≤
⌊
log2(33)

⌋
= 5. However, Lemma 3.2 (d) asserts that Υ(11) = 6, yielding a

contradiction.

r 4 5 6 7 8 9 10 11
2r 8 10 12 14 16 18 20 22
3r 12 15 18 21 24 27 30 33
ρr 8 16 16 16 32 32 32 32

Table 1: ρr
.
= 2

⌈√
2r− 7

4 +
1
2

⌉
.

Proof of Theorem 1.9. The case of t = 1 is trivial. Theorem 1.4 (c) shows that PS(2) ∩ [7] = {1, 4}. We deduce from
Theorem 1.6 (a) that PS(3) ∩ [2, 7] = ∅. Lemma 4.2 (a) shows that S(3, 8) , ∅. Recall from Lemmas 7.2 to 7.4 that
S(3, 9) = S(3, 10) = S(3, 11) = ∅. Therefore, we have PS(3) ∩ [11] = {1, 8}.

Let us assume that t ≥ 4 and pick p ∈ (PS(t) ∩ [4t − 1]) \ {1}. Our task is to show that the only possibility is
(t, p) = (4, 8).

Simple calculus shows that 2x ≥ x2 for all real numbers x ≥ 4. Thereby, 2⌈2
√

t⌉ − 4t ≥ 22
√

t − 4t ≥ 0 follows. In
view of Theorem 1.6 (b), we now know that t | p. Due to p ∈ [4t − 1], t > 1 and t | p, it happens p ∈ {2t, 3t}.

Note that 2
√

25×2×16 = 2
√

800 > 2
√

786 = 228 = 268435456 > 254803968 = 485, that is, 2
√

2r > 3r for r = 16.
Calculating the derivative of the function 2

√
2r − 3r with respect to r then shows that 2

√
2r > 3r holds for all r ≥ 16. It

thus comes from Theorem 1.6 (a) that t ≤ 15.

For those integers r satisfying 12 ≤ r ≤ 15, we can check that 2
⌈√

2r− 7
4+

1
2

⌉
= 26 > 3 × 16 > 3r. Henceforth,

Lemma 3.8 excludes the possibility of 12 ≤ t ≤ 15.

For those integers r with 4 ≤ r ≤ 11, we list 2r, 3r and ρr
.
= 2

⌈√
2r− 7

4+
1
2

⌉
in Table 1. We read from Table 1

that 2r ≥ ρr only if r = 4, while 3r ≥ ρr only if r ∈ {4, 6, 7, 11}. According to Lemma 3.8, this means that
(t, p) ∈ {(4, 8), (4, 12), (6, 18), (7, 21), (11, 33)}. By Lemmas 7.5 to 7.8, we have S(4, 12) = S(6, 18) = S(7, 21) =
S(11, 33) = ∅. Note that Example 1.3 claims that S(4, 8) , ∅. This then proves that (t, p) = (4, 8), as was to be
shown.
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8. Further questions and remarks

A good understanding of cyclic decomposition should mean a good knowledge aboutU as given in Definition 1.1
as well as its three projections as described in Definition 7.1. Our paper has chosen to investigate more about PS(t)
and a study ofU from many other perspectives is still left open. What is the relationship between PS(t) and PT (k)?
Is there any symmetry relationship or any principle of uncertainty between them?

A numerical semigroup is a set of nonnegative integers that is closed under addition, contains 0, and whose
complement in N0 is a finite set [ADGS20, BCDF20, RGS09]. Let t ∈ N. Note that 1 ∈ {0} ∪ PS(t) and that
{0} ∪ PS(t) = N0 if and only if t = 1. Therefore, {0} ∪ PS(t) is a numerical semigroup if and only if t = 1. Recall
the definition of PS∗(t) and QS∗(t) from Definition 4.1 and Eq. (9), respectively. Let us put PS⋆(t) .= PS∗(t)∪ {0} and
QS
⋆(t) .= QS∗(t) ∪ {0}.

Lemma 8.1. For every t ∈ N, QS⋆(t) is a numerical semigroup.

Proof. Lemmas 4.5 (b) and 4.5 (c) claim that QS⋆(t) is closed under addition, and Lemma 4.11 shows that N0 \QS
⋆(t)

is a finite set. This completes the proof.

Question 8.2. Let t be a positive integer. Is PS⋆(t) a numerical semigroup? Note that Lemma 4.11 says that N0 \

PS
⋆(t) is finite.

Take t, p ∈ N. Let K and L be two sets and let Φ and Ψ be two cyclic decompositions of (Kt,K, t) and (Lt, L, t)
with period p, respectively. We say that Φ represents Ψ if there is a map β : K → 2L \ ∅ such that {β(a) : a ∈ K}
is a partition of L and for every i ∈ [p], it holds

⋃
x∈Φi
β(x) = Ψi. We also say that Ψ is a blow-up of Φ. For every

(t, p) ∈ N2, let κt,p be the minimum nonnegative integer such that every cyclic decomposition of (Kt,K, t) with period
p can be represented by a cyclic decomposition of ([κt,p]t, [κt,p], t) with period p. If there does not exist any cyclic
decomposition of (Kt,K, t) with period p for some set K, we adopt the convention that κt,p

.
= 0.

Remark 8.3. Let Φ be a cyclic decomposition of (K,Kt, t) with period p.

(a) Assume t = 1. It is clear that
⊔

i∈[p]Φi = K, and hence Φ can be represented by a cyclic decomposition of
([p], [p], 1) with period p. Therefore, we have κ1,p = p.

(b) In general, we can assume, without loss of generality that, for every J ⊆ Z/pZ, (
⋂

i∈J Φi)\ (
⋃

i∈[p]\J Φi) contains
at most one element. With this assumption, we are reduced to the case of |K| ≤ 2p. It thus follows that κt,p ≤ 2p.
Note that we have used this argument in the proof of Lemma 3.4.

It is not too hard to prove that lim infp→∞
t
pκ(t, p) ≥ 1 for every t ∈ N. However, we still have no clue about how

to tackle the following conjecture. Anyhow, with the help of Lemma 6.2, a positive solution to Question 8.5 might be
useful in tackling Conjecture 8.4.

Conjecture 8.4. lim supt,p→∞
t
pκt,p is finite.

Question 8.5. Let t, k and p be positive integers with p > tk. Let M be a matroid and let ϕi, i ∈ Z/pZ, be a circular
sequence of elements of M. Let Ξ .= {Λ ⊆ Z/pZ : Λ ∩ ( j + ⟨t − 1⟩) , ∅ for every j ∈ Z/pZ}. Assume that the rank of
the set {ϕi : i ∈ Λ} in M is at most k for all Λ ∈ Ξ. Is it true that the rank of {ϕi : i ∈ Z/pZ} in M has an O(k) upper
bound?

We call two cyclic decompositions Φ′ and Ψ′ quasiequivalent provided there are two equivalent cyclic decom-
positions Φ and Ψ such that Φ′ and Ψ′ are blow-ups of Φ and Ψ, respectively. For any t, p ∈ N, we write πt,p for the
maximum of those positive integers m such that we can find m cyclic decompositions of order t and period p which are
pairwise non-quasiequivalent. It follows from Remark 8.3 (b) that πt,p < ∞. It may be of special interest to determine
those (t, p) ∈ N2 with πt,p = 1 or those with πt,p = 0. In Example 8.6, we shall show that the function Φ listed in
Example 1.3 is essentially the only cyclic decomposition of order 4 and period 8, namely π4,8 = 1.

Example 8.6. Let K be a set. LetΦ be a cyclic decomposition of (K4,K, 4) with period 8. Then Lemma 3.4 shows that
DiagΦ = {i, i+4} for some i ∈ Z/8Z. Up to translation, we can assume that DiagΦ = {1, 5}. It follows from Lemma 2.5
that Φ1

< = Φ
5
<. Let M .

= ⟨3⟩ \ Φ1
< = ⟨3⟩ \ Φ

5
<. Theorem 2.11 shows that |M| ≥ 1. Corollary 3.6 shows that 0, 3 < M.
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If it holds {1, 2} ⊆ M, then one can check that Φ[2,5] ∩ Φ[0,3] , ∅, violating the fact that Φ is a cyclic decomposition.
Accordingly, M = {1} or {2}. Let Ψ be the reflection of Φ with Φi = Ψ5−i for all i ∈ Z/10Z. Considering Ψ instead
if necessary, We can assume that {2} = M. Let A .=

⋂
i∈[4]Φi and B .=

⋂
i∈[4]Φi+4. For every x, y ∈ Z/8Z, there exists

z ∈ {x, x + 4} such that z − y ∈ ⟨3⟩. Consequently, Lemma 6.2 shows that (Φx,Φx+4) ∈
{
(A, B), (B, A), (K,K)

}
for every

x ∈ Z/8Z. It further follows that

Φx =


A, if x ∈ {1, 2, 4};
B, if x ∈ {5, 6, 8};
A ⊔ B = K, if x ∈ {3, 7}.

(82)

Eq. (82) tells us that π4,8 = 1 and κ4,8 = 2. Due to the symmetry between A and B, we may say that Φ[i,i+3] and
Φ[i+4,i+7] form an “antipodal pair” for all i ∈ Z/8Z. Using the ‘joker’ symbol as adopted in [CKMS17b], we can
write (Φ[1,4],Φ[5,8]) = (AA ⋄ A, BB ⋄ B), (Φ[2,5],Φ[6,9]) = (A ⋄ AB, B ⋄ BA), (Φ[3,6],Φ[6,9]) = ( ⋄ ABB, ⋄ BAA),
(Φ[4,7],Φ[7,10]) = (ABB ⋄ , BAA ⋄ ).

At the end of [CKMS17b, § 2.3], Chen et al. mentioned that Example 1.3 is essentially the only binary cyclic
universal partial word which they were aware of. Fillmore et al. [FGK+23, Theorem 3.1] recently found seven in-
equivalent binary cyclic universal partial words of order 8 and period 128. We mention that the 8-intervals of the 3rd
and 4th examples constructed in the proof of [FGK+23, Theorem 3.1] both consist of 64 antipodal pairs. The work
of Fillmore et al. [FGK+23] makes use of astute graphs and their Euler tours, namely perfect necklaces. Note that
astute graphs are nothing but generalized wrapped butterflies [DW05, Pra89, WL02]. Can we find more binary cyclic
universal partial words? Especially, any more such words which provide us antipodal pairs as we see in Example 8.6?

Let K be a set with at least three elements. Let Φ1, . . . ,Φp+t−1 be a sequence of elements from {K} ∪
(

K
1

)
such that

Kt =
⊔p

i=1(Φi × Φi+1 × · · · × Φi+t−1). Goeckner et al. [GGH+18, Theorem 4.8] proved that we must have Φi = Φi+p

for all i ∈ [t − 1], that is, Φ1, . . . ,Φp provide a cyclic decomposition of (Kt,K, t). Can we strengthen this result by
relaxing the condition of Φi ∈ {K} ∪

(
K
1

)
?

Let Φ be a cyclic decomposition of (Kt,K, t) with period p ≥ 2. In case that Φ is a cyclic universal partial word
as introduced in Remark 1.10, Goeckner et al. [GGH+18, Definition 4.2] defined the diamondicity of Φ to be t − Φ#

<.
Lemma 3.5 (b) shows that Φ#

< ≥
√

2t, which can be viewed as an extension of [GGH+18, Proposition 4.7] for cyclic
universal partial words. We should mention that Goeckner et al. [GGH+18, Question 6.3] asked if any Ω(t) lower
bound for Φ#

< can be established, where they required Φ to be a cyclic universal partial word and stated the problem
in terms of diamondicity. To which extent can we improve Lemma 3.5 (b) for general cyclic decompositions?

Kiefer and Ryzhikov [KR24] studied the complexity of computing the period and exponent of a digraph. We think
that various corresponding complexity problems about the hydras should be studied as well.

Let t be a positive integer. Theorem 1.9 determines PS(t) ∩ [4t − 1]. By virtue of Lemma 3.8, 4t ∈ PS(t) will
imply that t ∈ [11] ∪ {16}. For t = 1, it is clear that 4 ∈ PS(1). For t = 2, Theorem 1.4 (c) gives 8 ∈ PS(2). For t = 4,
Lemma 4.2 (a) confirms that 16 ∈ PS(4). Analogous to Lemma 7.8, we can verify that 4t < PS(t) for any t ∈ {11, 16}.
When t ∈ {3, 5, 6, 7, 8, 9, 10}, we have not checked whether or not 4t ∈ PS(t).

The characterization of the extremal family of subboxes as discussed in Theorem 2.8 is useful in our study of pe-
riods; see Lemmas 5.5 and 7.3. Is there any alternative equality characterization? There have been quite some further
extensions or variants of the work in [ABHK02], say [AP24, BLLW19, GKP04, GRV15, Hol19, KP08]. In addition
to Remark 2.12, we like to mention that [GKP04, Theorem 3] and [Hol19, Theorem 2] are both about the structure of
extremal subbox families. The difference between our hydra period problem and the widely studied problem of parti-
tioning a box into subboxes [ABHK02] is that we impose some consecutive constraint on the subboxes. Analogous to
the minimum partition problem, a natural problem is to determine minPS(t) \ {1}. Note that Theorem 1.9 gives some
very rough information on this parameter.

Many combinatorial objects of a flavor similar to cyclic decompositions have been studied in the literature
[BMMT23, BSSSW10, GHS22, KNP24, MEY21, MEY23, QWX22]. To conclude the paper, let us suggest the
following definition, which somehow unifies our cyclic decomposition as stated in Definition 1.1 and the definition of
universal partial cycles for permutations [CDG92, CFH+14, KLSS23, KPV19].

Definition 8.7. Let t be a positive integer and let K be a set. Let ∼ be an equivalence relation on Kt, and let X be a
subset of Kt. For every x ∈ Kt, we use [x]∼ for the equivalence class of ∼ containing x. A cyclic decomposition of
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(X,∼,K, t) with period p ∈ N is a map Φ : Z/pZ → 2K \ ∅ together with a map LocΦ : X → Z/pZ such that, for
every x ∈ X, [x]∼ ∩

∏ j+t−1
i= j Φi , ∅ holds if and only if j = LocΦ(x).
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