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Abstract9

Let S be a transformation semigroup acting on a set Ω. The action of S on Ω can be10

naturally extended to be an action on all subsets of Ω. We say that S is `-homogeneous11

provided it can send A to B for any two (not necessarily distinct) `-subsets A and B of Ω.12

On the condition that k ≤ ` < k + ` ≤ |Ω|, we show that every `-homogeneous transfor-13

mation semigroup acting on Ω must be k-homogeneous. We report other variants of this14

result for Boolean semirings and affine/projective geometries. In general, any semigroup15

action on a poset gives rise to an automaton and we associate some sequences of integers16

with the phase space of this automaton. When this poset is a geometric lattice, we pro-17

pose to investigate various possible regularity properties of these sequences, especially the18

so-called top-heavy property. In the course of this study, we are led to a conjecture about19

the injectivity of the incidence operator of a geometric lattice, generalizing a conjecture of20

Kung.21
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1 Introduction24

1.1 Transformation and phase space25

Let Γ be a digraph, namely a pair consisting of its vertex set V(Γ) and arc set E(Γ) ⊆26

V(Γ) × V(Γ). We call Γ symmetric if (u, v) ∈ E(Γ) holds if and only if so does (v, u) ∈27

E(Γ). For any A ⊆ V(Γ), we adopt the notation Γ[A] for the subdigraph of Γ induced by28

A which has vertex set A and arc set E(Γ) ∩ (A × A). The number of weakly connected29

components and the number of strongly connected components of Γ will be dubbed wcc(Γ)30

and scc(Γ), respectively.31
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For a set Ω, all maps from Ω to itself form the set ΩΩ. For each g ∈ ΩΩ and α ∈ Ω,1

we write αg for the image of α under the map g. The composition of maps provides an2

associative product on the set ΩΩ and thus turns it into a monoid, namely a semigroup with3

a multiplicative unit. We call this monoid the full transformation monoid on Ω and denote4

it by T(Ω). A subset of T(Ω) which is closed under map composition, whether or not it5

contains the identity map on Ω, is called a transformation semigroup acting on Ω. Let S be6

a transformation semigroup on Ω. We say that S is transitive on a set A ⊆ Ω if for every7

α, β ∈ A we can find g ∈ S such that αg = β; we call S transitive if S is transitive on8

Ω. If the transformation semigroup S is generated by a set G ⊆ ΩΩ, namely S consists9

of products of elements of G of positive length, we call (S,G) a deterministic automaton10

on Ω [66, §1]. The phase space of an automaton (S,G) on Ω, denoted by Γ(S,G), is11

the digraph with vertex set Ω and arc set {(α, αg) : α ∈ Ω, g ∈ G}. When Ω has at12

least two elements, the claim that S is transitive is equivalent to the claim that Γ(S,G) is13

strongly connected for any generator setG of S. We write Γ(S, S) simply as Γ(S) and note14

that each strongly/weakly connected component of Γ(S) coincides with a strongly/weakly15

connected component of Γ(S,G) for any generator set G of S. For all work in this paper,16

we can simply focus on Γ(S) instead of considering Γ(S,G) for any specific generator set17

G. We emphasize Γ(S,G) from the phase space viewpoint here to highlight the connection18

between semigroup theory and automata theory, and to indicate the role played by the19

choice of G in some problems related to various distance functions on the phase space, say20

the Černý conjecture. For any set Ω, a subset of T(Ω) forms a permutation group on Ω21

whenever it is a transformation semigroup and each element has an inverse in it, namely22

it is a set of bijective transformations of Ω and is closed under compositions and taking23

inverses. Permutation groups correspond to reversible deterministic automata.24

Let Ω be a set. We follow the common practice to use 2Ω for the power set of Ω. For25

each g ∈ T(Ω), let g be the element in T(2Ω) that sends each A ∈ 2Ω to Ag .
= {ag :26

a ∈ A}. More generally, for each G ⊆ T(Ω), G refers to the set {g : g ∈ G}. For27

any transformation semigroup S on Ω and any generator set G of S, S, as a semigroup28

derived from S, is known to be the powerset transformation semigroup of S acting on 2Ω
29

and (S,G) is known to be the powerset automaton of (S,G). It may be interesting to iterate30

the powerset automaton construction and examine the evolution of the phase spaces of the31

resulting automata.32

When discussing transformation semigroups, we may often be more interested in those33

which preserve some structures, say simplicial maps for simplicial complexes, continuous34

maps for topological spaces, ordering preserving maps for posets, or adjacency-preserving35

maps in matrix geometry [51, 65]. Unlike the work on group actions on posets [3, 58]36

and matroids [19], very little has been done on semigroup actions on these structures [61].37

Moving from group actions to semigroup actions is just to consider general deterministic38

automata instead of reversible ones.39

1.2 Valuated poset and its shape40

For any two sets Ω and Ψ, if they are different or if we do not emphasize that they may be41

equal, the image of ω ∈ Ω under a map g ∈ ΨΩ is denoted g(ω); note that we often write42

it as ωg when Ω = Ψ.43

A poset P consists of a set Ω and a binary relation <P on it which is transitive and44

acyclic, namely we require that α <P α never happens, and that α <P β and β <P γ45

implies α <P γ for all α, β, γ ∈ Ω. We often just write P for its ground set Ω and we46
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say the poset P is finite if |P | is finite. For each α ∈ P , the principal ideal generated by1

α is the set {β : β <P α} ∪ {α} ⊆ P , which we denote by P↓(α); the principal filter2

generated by α is the set {β : α <P β} ∪ {α} ⊆ P , which we denote by P↑(α). An3

ideal (filter) is a union of principal ideals (filters). A map g from a poset P to a poset Q4

is order-preserving if g(β) ∈ Q↓(g(α)) holds whenever β ∈ P↓(α). We use End(P ) to5

denote the set of all order-preserving maps from P to itself.6

Let Z≥0 be the set of nonnegative integers which carries a natural poset structure such7

that a < b in Z≥0 if and only if b − a is a positive integer. A valuation on a poset P is8

an order-preserving map rP from P to the poset Z≥0; we call rP (x) the rank of x in the9

valuated poset. When we say P is a valuated poset, we are considering the poset P together10

with a valuation rP , though the valuation may be only implicitly indicated. The rank of a11

valuated poset P , denoted by r(P ), is the maximum value of rP (α) for α ∈ P if it exists12

and is∞ otherwise. For a poset P , the symbols like <P and rP will often be abbreviated13

to < and r when no confusion can arise. Let P be a valuated poset. For any k ∈ Z≥0, we14

write Pk for the set {α ∈ P : r(α) = k}. We call the sequence |P0|, |P1|, . . . the shape of15

the valuated poset and refer to it by S(P ). If r(P ) < ∞, S(P ) is a sequence of r(P ) + 116

nonnegative integers.17

Let P be a valuated poset and let S be a subsemigroup of End(P ). The weak shape of18

P under the action of S is the sequence19

wcc(Γ(S)[P0]),wcc(Γ(S)[P1]), . . .

which we denote by WS(S, P ); while the strong shape of P under the action of S is the20

sequence21

scc(Γ(S)[P0]), scc(Γ(S)[P1]), . . .

which we denote by SS(S, P ). Note that22

S(P ) = WS(S, P ) = SS(S, P )

when the semigroup S consists of the identity transformation from End(P ).23

The main purpose of this note is to propose a study of the possible regularity in the24

strong/weak shape of a semigroup acting on a valuated poset.25

1.3 Geometric lattice and top-heavy property26

A matroid M consists of a ground set EM and a rank function rM from 2EM to the set of27

nonnegative integers plus infinity such that the rank axioms are satisfied [13, §1.5]. The28

flats of a matroid M , ordered by inclusion, form a very pretty structure, called the matroid29

lattice of M and denoted by F(M). For each nonnegative integer t, let Ft(M) be the set of30

all rank-t flats of the matroid M . A geometric lattice is an atomic and semimodular lattice31

which does not have any infinite chain [63, p. 305]. We mention that a geometric lattice32

is cryptomorphic to a natural object called combinatorial geometry [63, Theorem 23.1]33

and that finite geometric lattice is nothing but finite matroid lattice [35, p. 163, Birkhoff’s34

Theorem]. A geometric/matroid lattice has a natural valuated poset structure, where the35

valuation is given by its rank function. For example, for a matroid M , all elements in36

Ft(M) have rank t. In a geometric lattice, the elements of rank 1, 2 and 3 are viewed as37

points, lines and planes, respectively, thus giving geometric intuitions to many results about38

geometric lattices.39
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For each linear space V and each nonnegative integer k, we use Gr(k, V ) for the set1

of all k-dimensional linear subspaces of V and we call
⋃∞
k=0 Gr(k, V ) the Grassmannian2

of V , which is denoted by Gr(V ). If V is finite dimensional, Gr(V ) is surely a geometric3

lattice with elements from Gr(k, V ) having rank k.4

Example 1.1. Let n and k be two positive integers such that k < n. Fix a non-degenerate5

inner product on Qn, say 〈, 〉. For each g ∈ GLn(Q), let g> stand for the adjoint of g,6

namely the element such that 〈ug, v〉 = 〈u, vg>〉 for all u, v ∈ Qn, and we write g#7

for (g−1)>. Let S ≤ GLn(Q) be a matrix group acting on Qn. If S is transitive on8

the set of all dimension-k subspaces and if g# ∈ S for all g ∈ S, then S is transitive9

on the set of dimension-(n − k) subspaces. To see this, fix a pair of subspaces (U,U ′)10

which are orthogonal complements to each other with respect to 〈, 〉 and (dimU,dimU ′) =11

(k, n − k). For each g ∈ S, we can see that Ug and U ′g# are orthogonal complements12

to each other with respect to the given inner product 〈, 〉. Considering the set of pairs13

{(Ug, U ′g#) : g ∈ S}, we see that the transitivity on Gr(k,Qn) implies transitivity on14

Gr(n− k,Qn).15

Motivated by Example 1.1, here is a very simple question on the very simple geometric16

lattice Gr(Q3). Surprisingly, we even could not find any discussion of it in the literature.17

Question 1.2. If S is a general matrix group acting on Q3, can we draw the conclusion18

that S is transitive on Gr(1,Q3) from the assumption of its transitivity on Gr(2,Q3)?19

What about only assuming that S is a matrix semigroup?20

Some seemingly weird properties of sequences turn out to be ubiquitous when we are21

examining some interesting structures or processes [6, 10, 11, 28, 57, 60]. We review22

some of them below. Let c0, c1, . . . , be a sequence of n+ 1 real numbers, where n can be23

finite or infinite. We call it t-top-heavy if ck ≤ twhenever there exists an integer ` such that24

k ≤ ` ≤ k+` ≤ n and c` ≤ t; we call it top-heavy if it is t-top-heavy for all t ∈ R, namely25

ck ≤ c` holds for all k, ` such that k ≤ ` ≤ k + ` ≤ n; We call it unimodal if you cannot26

find three distinct integers i, j, k such that 0 ≤ i < j < k ≤ n and ci − cj > 0 > cj − ck;27

we call it log-concave if c2i ≥ ci−1ci+1 for all i = 1, . . . , n − 1. When n is finite, we call28

the sequence real-rooted provided the polynomial c0 + c1x + · · · + cnx
n in the unknown29

x only has real roots and we call it ultra-log-concave provided c0
(n

0)
, . . . , cn

(n
n)

forms a log-30

concave sequence. Note that Question 1.2 is about the possible 1-top-heavy property of the31

strong shape of Gr(Q3) under a matrix semigroup action.32

In the 1970s, two log-concavity conjectures [60, Conjecture 3] appeared in combina-33

torics community which claim that the sequences of Whitney numbers of both the first kind34

and the second kind of a finite matroid are log-concave. The first conjecture was verified35

by Adiprasito, Huh and Katz [1]. Mason [39] had made variants and stronger versions of36

the second conjecture; but even the original conjecture is still open. Dowling and Wilson37

[23] conjectured that the sequence of Whitney numbers of the second kind of a finite ma-38

troid is top-heavy. When restricted to finite realizable matroids, this top-heavy conjecture39

was proved by Huh and Wang [27]. The second log-concavity conjecture as described40

above, which is about the Whitney numbers of the second kind [49], simply says that the41

shape of every geometric lattice is log-concave. The above-mentioned Dowling-Wilson42

top-heavy conjecture says that the shape of every finite geometric lattice is top-heavy. On43

the condition that these two conjectures are both true, we know that the shape of a finite44

geometric lattice is both log-concave (and hence unimodal) and top-heavy. Can we draw45
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this conclusion for the strong/weak shape of some semigroup actions on some geometric1

lattices?2

Boolean lattices, partition lattices and projective/affine geometries are some most well-3

known geometric lattices. It is easy to see that their shapes are all ultra-log-concave4

(and hence real-rooted) and top-heavy [36]. The main result of this paper, Theorems 2.15

and 2.12, declare the top-heavy property for the strong/weak shape of some semigroups6

acting on Boolean lattices and projective/affine geometries. The semigroups considered by7

us are those derived from “simple” transformations. We also report our attempt at tackling8

the same problem for partition lattices and the Vámos matroid.9

In Section 2, we will present our main results as well as pertinent problems, examples,10

and remarks. The first three subsections are devoted to Boolean lattices, partition lattices11

and projective/affine geometries. The last subsection is a simple discussion in the context12

of matroids. Before digging into the proofs of the main results, we develop some technical13

tools in Section 3. In the sequel, we provide in Sections 4 to 7 all the proofs missing from14

Sections 2.1 to 2.4. We conclude the paper in Section 8 with a brief discussion of the15

present work and some possible further research.16

2 A top-heavy promenade17

2.1 Boolean semiring and homogeneity18

For any set Ω, the set BΩ
.
=
⋃∞
k=0

(
Ω
k

)
forms a poset under the inclusion relationship,19

which is often known as the Boolean semiring over Ω, and the set 2Ω gives rise to the20

Boolean algebra over Ω. When we view BΩ as a valuated poset, unless stated otherwise,21

the valuation will be r(A) = |A| for all A ∈ BΩ. If Ω is a finite set, BΩ coincides with 2Ω
22

and is referred to as a Boolean lattice.23

Let A and Ω be two sets with A ⊆ Ω. For any g ∈ ΩΩ, write g|A for the restriction24

of g on A. Let S be a transformation semigroup on Ω. For any positive integer k ≤ |Ω|,25

we name S k-homogeneous if the transformation semigroup S is transitive on
(

Ω
k

)
, that is,26

scc(Γ(S)[
(

Ω
k

)
] = 1. The stabiliser permutation group of (S,A) is the permutation group27

SA
.
= {g|A : g ∈ S,Ag = A} acting on A. The relative transformation semigroup of28

(S,A) is the transformation semigroup S̃A
.
= {g|A : g ∈ S,Ag ⊆ A} acting on A. Note29

that the action of S̃A on A may not be transitive even if S acts on A transitively.30

Theorem 2.1. Let Ω be a set of size n. Let S be a transformation semigroup on Ω and let31

Γ be the phase space of S.32

(1) SS(S,BΩ) is 1-top-heavy.33

(2) Both WS(S,BΩ) and SS(S,BΩ) are top-heavy.34

(3) Let k and ` be two integers such that 0 ≤ k ≤ ` ≤ k + ` ≤ n+ 1. Let A ∈
(

Ω
k

)
and35

B ∈
(

Ω
`

)
. If n < ∞ and S is `-homogeneous, then scc(Γ(SA)) = wcc(Γ(SA)) ≤36

wcc(Γ(SB)) = scc(Γ(SB)).37

Question 2.2. Take a finite set Ω and two integers k and ` such that k ≤ ` < k+` ≤ |Ω|+1.38

Let S be an `-homogeneous transformation semigroup acting on Ω. For any A ∈
(

Ω
k

)
and39

B ∈
(

Ω
`

)
, does it always hold that wcc(Γ(S̃A)) ≤ wcc(Γ(S̃B))?40
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When restricting to permutation groups, the results in Theorem 2.1 are all known more1

than 40 years ago: Claim (1) for an infinite set Ω was discovered by Brown [12, Corollary2

1]; Claim (2) for a finite set Ω was derived by Livingstone and Wagner [37, Theorem 1];3

Claim (3), as well as a positive answer to Question 2.2 for permutation groups, was proved4

by Cameron [15, Proposition 2.3] under the mild restriction of k + ` ≤ |Ω|. Let G be a5

group acting on a finite set Ω. By Theorem 2.1 (2), or more precisely Livingstone-Wagner6

Theorem [37, Theorem 1], we know that the strong/weak shape of 2Ω under the action of7

G is a symmetric unimodal distribution. This means that, for any two integers k and `8

such that k ≤ ` < k + ` ≤ |Ω|, the number of G-orbits on
(

Ω
`

)
is equal to the sum of9

a nonnegative integer c plus the number of G-orbits on
(

Ω
k

)
. As an improvement of this10

fact, Siemons [55, Corollary 4.3] found a natural linear space whose dimension equals this11

integer c and he [55, Theorem 4.2] even obtained an algorithm to reconstruct the G-orbits12

on
(

Ω
k

)
from the information on the G-orbits on

(
Ω
`

)
without reference to the group G.13

Question 2.3. Let Ω be a finite set, and let k and ` be two integers such that k ≤ ` <14

k + ` ≤ |Ω|. Let S be a transformation semigroup on Ω and let Γ be the phase space of S.15

(1) Is there a counterpart of [55, Corollary 4.3] which explains the nonnegativity con-16

straint on the integer wcc(Γ[
(

Ω
`

)
])− wcc(Γ[

(
Ω
k

)
])?17

(2) If S is (` + 1)-homogeneous, is there a counterpart of [55, Corollary 4.3] which18

explains the nonnegativeness of the integer scc(Γ(SB)) − scc(Γ(SA)) for any A ∈19 (
Ω
k

)
and B ∈

(
Ω
`+1

)
?20

(3) Is there any algorithm to determine the weakly connected components of Γ[
(

Ω
k

)
] from21

the weakly connected components of Γ[
(

Ω
`

)
] without reference to the transformation22

semigroup S?23

Example 2.4. Let Ω be a set carrying a linear order ≺. A map g ∈ ΩΩ is order-preserving24

with respect to ≺ provided αg is not bigger than βg in ≺ whenever α is not bigger than β25

in ≺. Let S be the monoid consisting of all order-preserving maps on Ω with respect to the26

given linear order ≺. It is easy to see that S is `-homogeneous for all ` ≤ |Ω| but it is even27

not 2-transitive; by contrast, this phenomenon never happens for permutation groups due28

to a result of Livingstone and Wagner [37, Theorem 2(b)]. Note that the only permutation29

contained in S is the identity map in case that Ω is a finite set. This suggests that you may30

not be able to read Theorem 2.1 or answer Question 2.3 directly from those known facts on31

permutation groups.32

Example 2.5. Let Ω = {1, . . . , 6}. Let r and b be two maps in T(Ω) such that

r(1) = r(2) = 3, r(3) = r(4) = 5, r(5) = r(6) = 1;

b(6) = b(1) = 2, b(2) = b(3) = 4, b(4) = b(5) = 6.

Let S = 〈r, b〉. On the left of Fig. 1, we depict the phase space Γ(S, {r, b}); on the right33

of Fig. 1, we display both the strong shape and the weak shape of 2Ω under the action of34

S. Both weak shape and strong shape are unimodal and top-heavy. But neither of them is35

log-concave. Note that the peak of the weak shape does not happen at the middle rank 3.36
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Figure 1: Γ(S, {r, b}) and Γ(S, {r, b})[
(

Ω
k

)
], k ∈ {0, 1, . . . , 6}. See Example 2.5.

Example 2.6. Let Ω be a set of size n ≥ 3 and let S be a transformation semigroup acting1

on Ω. If SS(S, 2Ω) is not a sequence of all ones and has at least two ones at the beginning2

of it, then it cannot be log-concave. This happens when S is the alternating group of order3

n ≥ 4 and when S is 2-homogeneous but not 3-homogeneous.4

Example 2.7. Let n and k be two integers such that 1 ≤ k ≤ n. Let Ω be a set of size n5

and take X ∈
(

Ω
k

)
. Let S be the set {f ∈ T(Ω) : f |X = Id |X ,Ωf = X}. Note that S is6

a transformation semigroup on 2Ω satisfying7

wcc(Γ(S)[

(
Ω

i

)
] =

{
1, if 0 ≤ i ≤ k;(
n
i

)
, if k + 1 ≤ i ≤ n.

This shows that the sequence WS(S, 2Ω) is unimodal and top-heavy and that it is not log-8

concave when n ≥ 2. Note that SS(S, 2Ω) is a sequence of all ones.9

Question 2.8. Let S be a transformation semigroup acting on an n-element set Ω. When10

can we conclude that the strong/weak shape of 2Ω under the action of S is unimodal?11

Neumann [43] asked whether every λ-homogeneous permutation group is θ-homogeneous12

for all cardinals λ > θ ≥ ℵ0. Assuming Martin’s Axiom, Shelah and Thomas [54] gave a13

negative answer to it. Hajnal [26] supplied an example to show that 2θ-homogeneity does14

not imply θ-homogeneity. An observation in the same vein by Penttila and Siciliano [46,15

Remark 4.6] was based upon the Generalized Continuum Hyphothesis. For each statement16

in Theorem 2.1 (3), Question 2.2 and 2.3, it is interesting to see whether or not it holds in17

the case that Ω is an infinite set. We are also wondering if the rich theory on oligomorphic18

permutation groups [16] should have a counterpart for transformation semigroups.19
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2.2 Partition lattice1

Let Ω be a set. For any map s ∈ ΩΩ, we define its kernel map, denoted by s−1, to be2

the map from 2Ω to 2Ω that sends X ∈ 2Ω to Xs−1 = {y ∈ Ω : ys ∈ X} ∈ 2Ω. To3

illustrate the definition, we depict the phase space of a map s on the left of Fig. 2 and part4

of the phase space of s−1 in the middle of Fig. 2. A partition of Ω is a set of nonempty5

disjoint subsets of Ω whose union is Ω. We call these elements of a partition its blocks.6

The rank of a partition π is
∑
B∈π(|B| − 1). Write P(Ω) for the set of all partitions of Ω7

of finite ranks. When |Ω| <∞, the set P(Ω) together with the refinement relation forms a8

geometric lattice, which we call the partition lattice of Ω. Note that the rank of a partition9

in this geometric lattice is |Ω| minus the number of its blocks. Let Pk(Ω) be the set of10

rank-k partitions of Ω, namely, those partitions of Ω of size |Ω| − k. Each transformation11

s ∈ ΩΩ induces a transformation s∗ of 2Ω such that Πs∗ = {πs−1 : π ∈ Π} \ {∅} for all12

Π ∈ P(Ω). We demonstrate part of the phase space of s∗ on the right of Fig. 2 for the map13

s as shown on the left there. Let S be a transformation semigroup on Ω. We have a derived14

transformation semigroup S∗ := {s∗ : s ∈ S} on P(Ω), which we call the kernel space15

of S. We say that S is k-kernel homogeneous if for all Π,Π′ ∈ Pk(Ω) there exists s ∈ S16

such that Πs∗ = Π′, which surely implies scc(Γ(S∗)[Pk(Ω)]) ≤ 1.17

1

2

3

4

5

6

s

{2, 3}{4, 5}

{1, 6}

s−1

123|4|56 16|23|45

s∗

Figure 2: A map, its inverse and the derived action on partitions.

Example 2.9. On the left of Fig. 3, we depict the so-called Černý automaton C4 = Γ(S,G),18

where G = {a, b} consists of two transformations on a four-element set Ω. On the right19

of Fig. 3, we depict the automaton Γ(S∗, G∗) where S∗ is acting on P(Ω). Observe that20

WS(S∗,P(Ω)) = (1, 1, 1, 1) and SS(S∗,P(Ω)) = (1, 2, 2, 1) are both unimodal and top-21

heavy.22

For any finite set Ω, A ∈ 2Ω, π ∈ P(Ω) and s ∈ ΩΩ, it holds23

r(A) ≥ r(As) and r(π) ≤ r(πs∗).

This difference between Boolean lattice and partition lattice somehow hints at our difficulty24

of turning the following conjecture into a result like Theorem 2.1.25

Conjecture 2.10. Let Ω be a finite set and let S be a semigroup acting on Ω. Then both26

WS(S∗,P(Ω)) and SS(S∗,P(Ω)) are top-heavy.27

For each set Ω and each positive integer k ≤ |Ω|, we use P(Ω, k) for the set of partitions28

of Ω into k blocks.29
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Figure 3: Černý automaton C4 and its kernel space. See Example 2.9.

Question 2.11. (1) Take two positive integers k and ` with k < `. Let Ω be an infinite1

set and let S be a semigroup S acting on Ω. If S∗ is transitive on P(Ω, `), is it true2

that S∗ is transitive on P(Ω, k)?3

(2) The shapes of all Dowling lattices, which include all partition lattices, are real-rooted4

[8]. What about the top-heavy property of the (strong/weak) shapes of Dowling5

lattices under a semigroup action?6

There has been an active study of those permutation groups which are transitive on the7

set of all ordered or unordered partitions of a set of a given shape [2, 21, 38, 42]. But even8

when confining our attention to permutation groups, we are not aware of any work related9

to Conjecture 2.10 and Question 2.11.10

2.3 Subspace lattice11

Let Ω be a possibly infinite set of size n, let k be a nonnegative integer with k ≤ n and let F12

be a finite field. We mention that Gr(k, FΩ) is a q-analogue of
(

Ω
k

)
and their relationship is13

like the one between Johnson graphs and Grassmann graphs [44]. For each prime power q,14

we write Fq for the q-element finite field. Write Matn(Fq) for the multiplicative semigroup15

of all Ω by Ω matrices over Fq each row/column of which have finitely many nonzeros; and16

write Affn(Fq) for the semigroup of all affine linear transformation on Fnq equipped with17

the associated product of composition. We regard the empty set as the dimension-(−1)18

affine/linear subspace. The set of all nonempty finite linear subspaces of Fnq is denoted19

by Pq,n
.
= Gr(Fnq ) and the set of all dimension-k linear subspaces of Fnq is denoted by20

Pkq,n
.
= Gr(k,Fnq ). By a finite affine subspace of a linear space V , we mean a translate21

of a finite linear subspace of V . The set of all finite affine subspaces of Fnq is denoted by22

Aq,n and the set of all dimension-k affine subspaces of Fnq is denoted by Ak+1
q,n . Note that23

Pq,n and Aq,n are known as projective geometry and affine geometry over the field Fq ,24

respectively. For each nonnegative integer k, we put the rank of each element in Pkq,n and25

the rank of each element in Akq,n to be k, thus getting two valuated posets Pq,n and Aq,n,26
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which are geometric lattices when n <∞.1

We are ready to display Theorem 2.12, a q-analogue of Theorem 2.1. Kantor [30,2

Theorem 1] deduced a q-analogue of the aforementioned result of Livingstone and Wagner3

[37, Theorem 1]. If the semigroup S ≤ Matn(Fq) is a subgroup of the general linear4

group GLn(Fq), Stanley [58, Corollary 9.9] found that SS(SP ,Pq,n) and WS(SP ,Pq,n)5

are both symmetric and unimodal for finite n. Penttila and Siciliano [46, Theorem 4.4 (ii),6

(iii)] generalized this result of Stanley for groups to the case that n is infinite.7

Theorem 2.12. Let n be the size of a nonempty set, and let q be a prime power.8

(1) Let S ≤ Matn(Fq) be a linear transformation semigroup acting on Fnq . For each9

g ∈ S, write gP for g|Pq,n . Let SP be the transformation semigroup {gP : g ∈ S}10

acting on Pq,n. Then SS(SP ,Pq,n) and WS(SP ,Pq,n) are both top-heavy.11

(2) Let T ≤ Affn−1(Fq) be an affine linear transformation semigroup acting on Fn−1
q .12

For each g ∈ T , write gA for g|Aq,n−1
. Let TA be the transformation semigroup13

{gA : g ∈ T} acting on Aq,n−1. Then SS(TA,Aq,n−1) and WS(TA,Aq,n−1) are14

both top-heavy.15

Remark 2.13. When n is infinite, Theorems 2.1 and 2.12 in the original version of this16

paper, submitted on 19 July 2018, contains weaker results. Following the proof presented17

by Bercov and Hobby for [9, Corollary 1] and also the proof of Roy for [50, Theorem],18

we used the existence of Ramsey number [48, Theorem A] to derive Theorem 2.1 (1) for19

infinite n. A similar argument based on Ramsey number shows that both SS(SP ,Pq,n) and20

SS(TA,Aq,n−1) are 1-top-heavy for infinite n in the setting of Theorem 2.12. After the21

acceptance of this paper in 2022, we notice the work of Penttila and Siciliano [46, Lemma22

3.1], which was submitted on 30 April 2019 and published in 2021, and thus arrive at the23

corresponding strengthening in Theorem 2.1 (2) and Theorem 2.12 via an application of24

their idea. See Lemma 3.6.25

Remark 2.14. Kantor [31, Theorem 2] determined all the ordered-basis-transitive finite26

geometric lattices of rank at least three: Roughly speaking, they are Boolean lattices, pro-27

jective (affine) geometries, and four sporadic designs. Kantor’s classification theorem along28

with Theorems 2.1 and 2.12 may be a basis for getting homogeneity results about ordered-29

basis-transitive matroids.30

Question 2.15. A general projective geometry is defined to be a modular combinatorial31

geometry that is connected in the sense that the point set cannot be expressed as the union32

of two proper flats [63, p. 313]. Can we establish a counterpart of Theorem 2.12 for general33

projective geometries?34

In mathematics we encounter quite some nice duality phenomena, say Chow’s Theorem35

[44, Corollary 3.1] and many duality concepts for matroids [13]. For projectie geometry,36

we have the following duality result of Stanley [58, Corollary 9.9].37

Theorem 2.16 (Stanley). Let F be a finite field and let k and n be two positive integers38

with k < n. For any subgroup G of GL(n, F ), the number of orbits of the action of G on39

Gr(k, Fn) must be the same with the number of orbits of G acting on Gr(n− k, Fn).40

Question 2.17. If n is the size of an infinite set, does Theorem 2.16 still hold? Here, we41

should first of all choose a good definition for infinite Grassmannians [45].42



Ars Math. Contemp. x (xxxx) 1–x 11

2.4 A glimpse of matroid1

In previous subsections, we discuss those poset endomorphisms which are derived from2

either set transformations or linear transformations. Since finite geometric lattices just en-3

code information of finite matroids, it is natural to ask why not directly consider matroids4

and morphisms among matroids, namely those transformations which preserve “indepen-5

dence structure”.6

Let M1 and M2 be two matroids and let f be a map from EM1
to EM2

. We call f a
weak map from M1 to M2 provided

rM1
(A) ≥ rM2

(Af)

holds for all A ⊆ EM1
, and we call f a strong map from M1 to M2 provided the preimage7

of any flat in M2 is a flat of M1 [32, 34, 56]. It is known that all strong maps must be weak8

maps.9

Let M be a matroid on the ground set EM = Ω. Let TM (Ω) (T∗M (Ω)) be the monoid10

consisting of all elements of T(Ω) which are weak (strong) maps from M to itself. If we11

know that S is a subsemigroup of TM (Ω) (T∗M (Ω)) acting on Ω, we can define a digraph12

ΓM,t(S) on Ft(M) as follows: for any X,Y ∈ Ft(M), there is an arc from X to Y if and13

only if there is g ∈ S such that the minimum flat containing Xg in M is Y. What is the14

relationship between the connectivity of ΓM,t(S) and ΓM,r(S) for different t and r? We15

can ask the same question by imposing the extra condition that every element f ∈ S is a16

bijection on Ω. If the matroid is a very special uniform matroid, namely a matroid in which17

all sets are independent, one can see that what is discussed in Section 1.3 becomes a very18

special case of this general setting.19

Vámos matroid, also known as Vámos cube, is a famous non-algebraic matroid [5, 22,20

41, 53]; see [24, Example 6.30] for a description of this rank-4 matroid over a ground set21

of size eight.22

Example 2.18. Let M be the Vámos matroid and let S be a subsemigroup of T∗M (EM ). It23

holds wcc(ΓM,1(S)) ≤ wcc(ΓM,2(S)) ≤ wcc(ΓM,3(S)) and scc(ΓM,1(S)) ≤ scc(ΓM,2(S)) ≤24

scc(ΓM,3(S)).25

Remark 2.19. Compared with the Fundamental Theorem of Projective (Affine) Geometry26

[17, 47], we think that weak/strong maps and bijective weak/strong maps for matroids are27

natural extensions of linear transformations and invertible linear transformations for linear28

spaces. We also mention the well-adopted viewpoint that the full permutation group and29

the full transformation semigroup can be interpreted as the general linear group and the30

linear transformation semigroup over the field with one element.31

3 Valuated poset and incidence operator32

3.1 Hereditary endomorphism and injective incidence operator33

To prepare for a proof of our main results listed in Section 2, we will introduce a key prop-34

erty and then present a key lemma for our work. The key property is the so-called hereditary35

endomorphisms. The key lemma is Lemma 3.2, which gives us some information of the36

strong/weak shapes of a poset under some semigroup action, provided the semigroup con-37

sists of hereditary endomorphisms and that some linear map associated with the poset is38

injective.39
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β βgP`

Pk ∩ P↓(β)

P`

Pk ∩ P↓(βg)

g

g

bijective

Figure 4: An (`, k)-hereditary endomorphism.

Let P be a valuated poset. For any nonnegative integers k ≤ `, we call the poset P1

(k, `)-finite provided Pk 6= ∅, P` 6= ∅ and the set P` ∩ P↑(α) is finite for every α ∈ Pk;2

we call P (`, k)-finite provided Pk 6= ∅, P` 6= ∅ and the set P↓(β) ∩ Pk is finite for3

every β ∈ P`; we call g ∈ End(P ) a (k, `)-hereditary endomorphism if for all α ∈ Pk4

which satisfies rP (g(α)) = rP (α) = k it happens that g induces a bijection from the5

set P` ∩ P↑(α) to P` ∩ P↑(αg); we call g ∈ End(P ) an (`, k)-hereditary endomorphism6

if for each β ∈ P`, rP (βg) = rP (β) = ` ensures that g induces a bijection from the set7

Pk∩P↓(β) to Pk∩P↓(βg). See Fig. 4 for an illustration. For any k, ` ∈ Z≥0, we designate8

by hEndk,`(P ) the set of all (k, `)-hereditary endomorphisms of the valuated poset P .9

Let S be a transformation semigroup on a valuated poset P and let G be a generating10

set of S. For any two nonnegative integers k and ` with k ≤ ` ≤ r(P ), we set ΠS,G(k, `)11

to be the digraph with vertex set Pk and arc set12

{(α, α′) ∈ Pk × Pk : ∃g ∈ G, β ∈ P` s.t. βg ∈ P`, α′ = αg, α ∈ P↓(β)};

we set ΠS,G(`, k) to be the digraph with vertex set P` and arc set13

{(α, α′) ∈ P` × P` : ∃g ∈ G, β ∈ Pk s.t. βg ∈ Pk, α′ = αg, α ∈ P↑(β)}.

We use the shorthand ΠS(k, `) for ΠS,S(k, `).14

Lemma 3.1. Let P be a valuated poset. Take two nonnegative integers k and ` such that15

k, ` ≤ r(P ) and that P is (`, k)-finite. Let S be a sub-semigroup of hEnd`,k(P ), let G16

be a generator set of S, and let Γ
.
= Γ(S,G). Let β ∈ P` and let α ∈ Pk be an element17

comparable with β. Assume that g and h are two elements of S such that βg ∈ P` and18

βgh = β. Then there exists f ∈ S such that βgf ∈ P` and αgf = α. Especially, if every19

weakly connected component of Γ[P`] is strongly connected, then so is ΠS,G(k, `).20

Proof. The second claim is immediate from the first and so our task is just to prove the21

first one. Without loss of generality, we assume that k < `. Since β(gh) = β and gh ∈22

S ≤ hEnd`,k(P ), it follows that gh induces a permutation on Pk ∩ P↓(β). But from the23

assumption that P is (`, k)-finite, we see that Pk ∩ P↓(β) is a finite set, which contains24

α. This means that there exists a positive integer r such that α(gh)r = α. Accordingly,25

for f = (hg)r−1h ∈ S it holds (βg)f = (βg)(hg)r−1h = β(gh)r = β ∈ P` and26

(αg)f = (αg)(hg)r−1h = α(gh)r = α, finishing the proof.27

For any set Ω, QΩ refers to the linear space of all rational functions on Ω. If P is an28

(`, k)-finite valuated poset, the incidence operator ζk,`P : QPk → QP` is the linear operator29
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such that for all f ∈ QPk and β ∈ P`, we have1

(ζk,`P (f))(β) =

{ ∑
α∈Pk∩P↓(β) f(α), if k ≤ `;∑
α∈Pk∩P↑(β) f(α), if k > `. (3.1)

Lemma 3.2. Let P be a valuated poset. Take two nonnegative integers k and ` not ex-2

ceeding r(P ) such that P is (`, k)-finite, and hence ζk,`P is well-defined. Let S be a sub-3

semigroup of hEnd`,k(P ) and let Γ stand for Γ(S). Assume that ζk,`P is an injective linear4

map from QPk to QP` .5

(1) wcc(Γ[Pk]) ≤ wcc(ΠS(k, `)) ≤ wcc(Γ[P`]).6

(2) scc(Γ[Pk]) ≤ scc(ΠS(k, `)) ≤ scc(Γ[P`]).7

Proof. (1) The first inequality is a consequence of the fact that E(ΠS(k, `)) ⊆ E(Γ[Pk]).8

Let W ⊆ QP` be the subspace of all functions which are constant on each weakly9

connected component of Γ[P`]; let V ⊆ QPk be the subspace of all functions which10

are constant on each weakly connected component of ΠS(k, `). Note that dim(V ) =11

wcc(ΠS(k, `)) and dim(W ) = wcc(Γ[P`]) and so it suffices to demonstrate dim(V ) ≤12

dim(W ).13

By symmetry, we only deal with the case of k ≤ `. For every f ∈ V and every arc
(β, βg) of Γ[P`], we have

(ζk,`P (f))(βg) =
∑

α′∈Pk∩P↓(βg)

f(α′)

=
∑

α∈Pk∩P↓(β)

f(αg) (g ∈ hEnd`,k(P ))

=
∑

α∈Pk∩P↓(β)

f(α) (f ∈ V )

= (ζk,`P (f))(β).

This says that ζk,`P (f) ∈ W for all f ∈ V . Hence, by the injectivity of ζk,`P , dim(V ) ≤14

dim(W ), as wanted.15

(2) The first inequality is a consequence of the fact that E(ΠS(k, `)) ⊆ E(Γ[Pk]).16

Let W ′ ⊆ QP` be the subspace of all functions which are constant on each strongly17

connected component of Γ[P`]; let V ′ ⊆ QPk be the subspace of all functions which18

are constant on each strongly connected component of ΠS(k, `). Note that dim(V ′) =19

scc(ΠS(k, `)) and dim(W ′) = scc(Γ[P`]) and so it suffices to demonstrate dim(V ′) ≤20

dim(W ′). Take f ∈ V ′. As ζk,`P is injective, we aim to show that ζk,`P (f) ∈W ′.21

By symmetry, we only deal with the case of k ≤ `. Assume that β and βg are from22

the same strongly connected component of Γ[P`], where g ∈ S. By the first claim of23

Lemma 3.1, for every α ∈ Pk ∩ P↓(β), α and αg fall into the same strongly connected24

component of Γ[Pk] and so, as f ∈ V ′,25

f(α) = f(αg). (3.2)
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This allows us to write

(ζk,`P (f))(βg) =
∑

α′∈Pk∩P↓(βg)

f(α′)

=
∑

α∈Pk∩P↓(β)

f(αg) (g ∈ hEnd`,k(P ))

=
∑

α∈Pk∩P↓(β)

f(α) (Eq. (3.2))

= (ζk,`P (f))(β),

proving that ζk,`P (V ′) ⊆W ′, as desired.1

3.2 Injectivity2

In order to apply Lemma 3.2, we may need to have some results to guarantee the injectivity3

of an incidence operator. In this regard, a good understanding of the incidence algebra of a4

poset may be valuable [35, 67]. We mention that Guiduli [4, Theorem 9.4] established an5

injectivity result for the so-called rank-regular semi-lattices. It may also be quite useful if6

the following conjecture [33, Conjecture 1.1] can be verified.7

Conjecture 3.3 (Kung). Let P be a finite geometric lattice. Let k and ` be two positive8

integers such that k ≤ ` ≤ r(P )
2 . Then ker(ζk,`P ) = {0}.9

We suggest a slight strengthening of Kung’s Conjecture (Conjecture 3.3) as follows.10

Conjecture 3.4. Let P be a geometric lattice. Let k and ` be two nonnegative integers11

such that k ≤ ` ≤ k + ` ≤ r(P ). If P is (`, k)-finite, then ζk,`P is an injective map.12

Remark 3.5. Let M be a matroid of rank r. Let S be a subsemigroup of T ∗M (EM ). For13

every f ∈ S, let f ′ : F(M) → F(M) be the map sending a flat X ∈ F(M) to the14

minimum flat containing Xf in M . Assume that f ′ ∈ hEnd`,k(F(M)) for every f ∈ S.15

In light of Lemma 3.2, if Conjecture 3.4 is valid for the lattice F(M), we will be able16

to conclude that both the sequence (wcc(ΓM,0(S)), . . . ,wcc(ΓM,r(S))) and the sequence17

(scc(ΓM,0(S)), . . . , scc(ΓM,r(S))) are top-heavy.18

Let P be a valuated poset which is (`, k)-finite for all nonnegative integers k ≤ `. We19

say that P has a top-heavy injective incidence operator provided ζk,`P is an injective linear20

map from QPk to QP` for all nonnegative integers k and ` satisfying k ≤ ` ≤ k+` ≤ r(P ).21

Penttila and Siciliano [46, Lemma 3.1] pointed out a simple way to establish some22

injectivity result for linear operators between infinite-dimensional linear spaces whenever23

they fulfil certain finiteness characteristics. We reformulate their observation below for the24

convenience of our later usage.25

Lemma 3.6. Let P be a valuated poset. Let k ≤ ` be two nonnegative integers such that26

P is (`, k)-finite. Assume that for every A ∈ Pk, we can find a finite subset Y of Pk+` such27

that the ideal generated by Y in P , denoted Y ↓ and with the restriction of rP as its rank28

function, contains A and possesses a top-heavy injective incidence operator. Then ζk,`P is29

an injective linear map from QPk to QP` .30
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Proof. Take f ∈ ker ζk,`P . Assume, for sake of contradiction, that f(A) 6= 0 for some1

A ∈ Pk. Choose Y ⊆ Pk+` such that A ∈ Y ↓ ∩ Pk and Y ↓ possesses a top-heavy2

injective incidence operator. Let Q represent the resulting valuated poset on Y ↓. Let g3

be the restriction of f on Qk and let h be the restriction of ζk,`P (f) = 0 on Y . We have4

0 = h = ζk,`Q (g) but g(A) = f(A) 6= 0, violating the assumption that Y ↓ has a top-heavy5

injective incidence operator.6

3.3 Incidence operator as an intertwiner7

For f ∈ ΨΩ, we sometimes need to talk about f(ω) for ω /∈ Ω. Following the practice8

of those mathematics with natural multivalued operations [7, 14, 64], we create a universal9

“don’t care” symbol ? /∈ Ψ and will set f(ω) = ?. We often regard ? as all possible values10

in Ψ and so, whenever we have some addition operation + on Ψ, we extend it to Ψ ∪ {?}11

by setting ?+ ψ = ? for all ψ ∈ Ψ ∪ {?}.12

Let P be a valuated poset. Let k and ` be two nonnegative integers no greater than13

r(P ). Let g ∈ PP . For f ∈ QPk , we write fg†,k for the element in ({?} ∪ Q)Pk , where14

? stands for “don’t care” and can be thought of as the whole set Q, such that the following15

holds for all β ∈ Pk:16

fg†,k(β) =

{
f(βg), if βg ∈ Pk;
?, if βg /∈ Pk.

Denote by Fix g†,k the set of f ∈ QPk for which17

fg†,k(β) ∈ {f(β), ?}

holds for all β ∈ Pk. If g ∈ hEnd`,k(P ), we say that it is a good (`, k)-hereditary
endomorphism of P provided that for any β ∈ P` with βg /∈ P` it holds αg /∈ Pk for
some α ∈ Pk which is comparable to β in P . Assuming that g is a good (`, k)-hereditary
endomorphism of P , for any β ∈ P` and f ∈ QPk we will have

(ζk,`P (f)g†,`)(β) = (ζk,`P (f))(βg)

=
∑

α′∈Pk∩(P↓(βg)∪P↑(βg))

f(α′)

=
∑

α∈Pk∩(P↓(β)∪P↑(β))

f(αg)

= (ζk,`P (fg†,k))(β)

whenever βg ∈ P`, and that

(ζk,`P (f)g†,`)(β) = (ζk,`P (f))(βg)

= ?

= (ζk,`P (fg†,k))(β)

whenever βg /∈ P`. This observation can be summarized by the commutative diagram18

in Fig. 5, which implies that Fix g†,k is mapped by ζk,`P to Fix g†,` for all good (`, k)-19

hereditary endomorphisms g of P .20
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f ζk,`P (f)

fg†,k ζk,`P (fg†,k)

ζk,`P

g†,k

ζk,`P

g†,`

Figure 5: The incidence operator intertwines with every good hereditary endomorphism.

Example 3.7. (1) Let Ω be a set of size n. Assume that 2 ≤ k < ` ≤ n. Here is an1

easy observation used often in the study of synchronizing automata: For any g ∈ ΩΩ
2

and any A ∈
(

Ω
`

)
, we have |Ag| = ` if and only if |Bg| = k for all B ∈

(
A
k

)
.3

This conclusion is surely not valid any more when k ≤ 1. Note that g is a good4

(`, k)-hereditary endomorphism of the Boolean lattice 2Ω for each g ∈ ΩΩ.5

(2) Take integers n, k and ` such that 2 ≤ k < ` ≤ n and let q be a prime power.6

Let P = Pq,n or P = Aq,n−1. Similar to the above claim on Boolean lattice,7

M is a good (`, k)-hereditary endomorphism of P for each M ∈ Matn(Fq) or8

M ∈ Affn−1(Fq), respectively.9

4 Boolean semiring10

Let Ω be a set and let k and ` be two nonnegative integers such that k < ` ≤ |Ω|. For the
valuated poset P = BΩ, we write the incidence operator ζk,`P defined in Eq. (3.1) as ζk,`Ω .
That is,

(ζk,`Ω (f))(B) =
∑
A∈(B

k)

f(A)

for all f ∈ Q(Ω
k) and B ∈

(
Ω
`

)
.11

Following a common approach in establishing homogeneity of permutation groups [15,12

40] [20, pp. 20-22], we will make use of the ensuing result on the rank of the subset13

inclusion matrix. The result has been discovered independently by many but the earliest14

appearance of it dates back to the work of Gottlieb [25, Corollary 2]. Among many different15

proofs of this classical result, we refer the reader to [18, Corollary] and [55, Theorem 2.4].16

Note that it gives a positive answer to Conjecture 3.4 for Boolean lattices.17

Lemma 4.1 (Gottlieb). Let Ω be a nonempty finite set. Then ker ζk,`Ω = {0} for any two18

integers k and ` satisfying 0 ≤ k ≤ ` ≤ k + ` ≤ |Ω|.19

Let Ω be a set and S be a transformation semigroup on Ω. Let Ω]
.
= {(ω,C) : ω ∈20

C ∈ 2Ω} and, for each g ∈ S, let g] be the transformation on Ω] which sends (ω,C)21

to (ωg,Cg) for all (ω,C) ∈ Ω]. Let S] stand for the transformation semigroup on Ω]22

consisting of all elements g] for g ∈ S. For all positive integers `, we use the following23

notation:24

Ω]`
.
= {(ω,C) : ω ∈ C ∈

(
Ω

`

)
}
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and1

Γ]`(S)
.
= Γ(S])[Ω]`].

Here is a result analogous to Lemma 3.1.2

Lemma 4.2. Let m be a positive integer and let S be an m-homogeneous transforma-3

tion semigroup acting on a set Ω. Then the digraph Γ]m(S) is symmetric. Especially,4

wcc(Γ]m(S)) = scc(Γ]m(S)).5

Proof. Take (ω,C) ∈ Ω]m and g ∈ S such that |Cg| = m.Our task is to show the existence6

of h ∈ S such that (ωg,Cg)h] = (ω,C). As S is m-homogeneous, we can find f ∈ S7

such that Cgf = (Cg)f = C. Hence, the fact that |C| = m < ∞ allows us to obtain8

a positive integer r for which (gf)r|C is the identity map on C. This means that we can9

choose h to be f(gf)r−1.10

Lemma 4.3. Let Ω be a set, let m be an integer satisfying |Ω| ≥ m > 1, and let S be a11

transformation semigroup on Ω. For every X ∈
(

Ω
m

)
, it holds12

scc(Γ(SX)) = wcc(Γ(SX)) ≤ wcc(Γ]m(S)) ≤ scc(Γ]m(S)). (4.1)

Moreover, if S is m-homogeneous, then13

scc(Γ(SX)) = wcc(Γ(SX)) = wcc(Γ]m(S)) = scc(Γ]m(S)). (4.2)

Proof. It is trivial to see that wcc(Γ(SX)) = scc(Γ(SX)) and wcc(Γ]m(S)) ≤ scc(Γ]m(S)).14

Let us call each strongly/weakly connected component of Γ(SX) a component. To prove15

Eq. (4.1), let us find an injective map ψ from the set of components of Γ(SX) to the set of16

weakly connected components of Γ]m(S).17

For each γ ∈ X , let the weakly connected component of Γ]m(S) containing (γ,X) be18

ψ′(γ). Take γ1, γ2 from the same component of Γ(SX). We may assume that γ1g = γ219

and Xg = X for some g ∈ S. As (γ1, X)g] = (γ1g,Xg) = (γ2, X), we see that20

ψ′(γ1) = ψ′(γ2). For each component C of Γ(SX), we can now choose any γ ∈ C21

and get a well-defined map ψ by setting ψ(C) = ψ′(γ). For every weakly connected22

component C] of Γ]m(S), let φ(C]) be the set {γ ∈ X : (γ,X) ∈ C]}. It is routine to23

check that φψ(C) = C for every component C of Γ(SX), proving that ψ is injective, as24

desired.25

Assume now S is m-homogeneous. It follows from Lemma 4.2 that wcc(Γ]m(S)) =26

scc(Γ]m(S)). We thus call each strongly/weakly connected component of Γ]m(S) simply27

a component. Since S is m-homogeneous, for every component C] of Γ]m(S), we have28

φ(C]) 6= ∅. This verifies that φ and ψ are inverses of each other. We thus get Eq. (4.2) and29

so finish the proof.30

Proof of Theorem 2.1. (1) This is a special case of (2).31

(2) This is direct from Lemmas 3.2, 3.6 and 4.1.32
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(3) Since S is `-homogeneous, it follows from Lemma 4.3 that1

wcc(Γ(SA)) = scc(Γ(SA)) ≤ wcc(Γ]k(S))

and2

wcc(Γ(SB)) = scc(Γ(SB)) = wcc(Γ]`(S)).

It then remains to prove wcc(Γ]`(S)) ≥ wcc(Γ]k(S)).3

We regard Ω] as a valuated poset by putting r((α,X)) = |X| and requiring (α,X) <4

(β, Y ) if and only if α = β ∈ Ω and X ( Y ⊆ Ω. Note that S] ⊆ hEnd`,k(Ω]). In view5

of Lemma 3.2 (1), it is sufficient to show that ζk,`
Ω] is injective.6

For each nonnegative integer m and each α ∈ Ω, let Ω]m,α
.
= {(α,A) : (α,A) ∈ Ω]m}.7

Corresponding to the partition Ω]k =
⋃
α∈Ω Ω]k,α and Ω]` =

⋃
β∈Ω Ω]`,β , the Ω]k×Ω]` matrix8

ζk,`
Ω] is viewed as a partitioned matrix with blocks ζα,β , which are the submatrices with row9

index set Ω]k,α and column index set Ω]`,β , where α, β ∈ Ω. Observe that10

ζα,β =

{
ζk−1,`−1
Ω\{α} , if α = β;

0, otherwise.

Since (k − 1) + (`− 1) ≤ |Ω| − 1, it follows from Lemma 4.1 that ζα,α = ζk−1,`−1
Ω\{α} is of11

full row rank for all α ∈ Ω. This implies that ζk,`
Ω] is an injective linear map, as desired.12

Remark 4.4. Let Ω be a set, which is not necessarily finite. Let k and ` be two integers13

with k ≤ ` ≤ k + ` ≤ |Ω|. For all f ∈ Q(Ω
`) and A ∈

(
Ω
k

)
, we put14

(ζ`,kΩ (f))(A) =
∑
A⊆B

f(B).

Making use of Lemma 4.1, it is easy to see that the linear transformation ζ`,kΩ : Q(Ω
`)

fin →15

Q(Ω
k)

fin is always a surjective map. Unfortunately, we do not see if this observation is helpful16

for getting a possible counterpart of Theorem 2.1 (3) for an infinite set Ω.17

5 A graded Möbius algebra18

Möbius algebra is a semigroup algebra which plays an important role in combinatorics19

[35, §3.6]. Huh and Wang [27] introduced a graded Möbius algebra for geometric lattices.20

Let L be a finite geometric lattice with rank function (valuation) r. Define a Q-algebra21

M(L,Q), called the graded Möbius algebra of L [27], to be the linear space with L as a22

Q-basis together with a multiplication given by23

xy =

{
x ∨ y, if r(x) + r(y) = r(x ∨ y),
0, if r(x) + r(y) > r(x ∨ y),

and extended by linearity and distributivity. For any non-negative integers k ≤ `, it is easy24

to see that the linear map ξk,`L as specified below is well-defined:25

ξk,`L : QLk → QL`

φ 7→ (
∑
x∈L1

x)`−kφ.
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We call a finite geometric lattice a realizable lattice if it is the matroid lattice of a finite1

realizable matroid. Here is the main result of Huh and Wang [27, Theorem 6] in their work2

on solving the realizable case of the top-heavy conjecture of Dowling-Wilson. Huh and3

Wang [27, Conjecture 7] conjectured that Theorem 5.1 holds without the assumption of4

realizability.5

Theorem 5.1 (Huh and Wang). Let L be a finite realizable geometric lattice with rank r.6

For any integers k and ` such that k ≤ ` ≤ k + ` ≤ r, the linear map ξk,`L is injective.7

Remark 5.2. (1) The partition lattice P(Ω) is isomorphic with the flat lattice of the8

graphic matroid of the complete graph on Ω. Note that a graphic matroid is regular,9

namely it is representable over every field. This means that finite partition lattices10

are realizable.11

(2) Assume that L is a either a Boolean lattice, or a subspace lattice or a partition lattice.12

It is easy to see that ξk,`L = CL,k,`ζ
k,`
L for some positive integer CL,k,` which is13

determined by L, k and `. Especially, ξk,k+1
L = ζk,k+1

L . An important message14

here is that, ζk,`L and ξk,`L , as two Q-linear maps, are either both injective or both15

non-injective.16

Kung [33, Theorem 1.3] verified Conjecture 3.3 for partition lattices of finite sets. We17

can improve his result a little bit now. When Ω is finite, Lemma 5.3 claims that Conjec-18

ture 3.4 holds for partition lattices.19

Lemma 5.3. Let Ω be a set. Let k and ` be two integers such that k ≤ ` ≤ k + ` ≤ |Ω|.20

Then ker(ζk,`P(Ω)) = {0}.21

Proof. By Lemma 3.6, Theorem 5.1, and Remark 5.2.22

Let Ω be a finite set and let k and ` be two integers such that 0 ≤ k ≤ ` ≤ k+ ` ≤ |Ω|.23

By virtue of Lemma 5.3, ker(ζk,`P(Ω)) = {0}. So, to prove Conjecture 2.10 via Lemma 3.2,24

we want to have s∗ ∈ hEnd`,k(P(Ω)) for all s ∈ ΩΩ. It is a pity that what we can have25

instead is s∗ ∈ hEndk,`(P(Ω)) for all s ∈ ΩΩ.26

For any transformation g on a set Ω, we associate a partition kerΩ(g) of Ω in which two27

elements α and β fall into the same part provided αg = βg, and we call kerΩ(g) the kernel28

of g. Note that kerΩ(g1g2) = kerΩ(g2)g∗1 for all g1, g2 ∈ T(Ω). For any transformation29

semigroup S on Ω, let PS(Ω) stand for the set {kerΩ(s) : s ∈ S} = {kerΩ(IdΩ)s∗ : s ∈30

S}, and call it the kernel partition subposet induced by S. It is clear that PS(Ω) is invariant31

under the action of the kernel space S∗. Inheriting the rank function on PΩ, PS(Ω) is still32

a valuated poset.33

For a permutation group, all its elements have the same kernel. For a transformation34

semigroup, the existence of different kernels may make some arguments for permutation35

groups invalid. It looks interesting to study the action of the kernel space S∗ on the kernel36

partition subposet PS(Ω).37

Example 5.4. Consider the Černý automaton C4 = Γ(S,G) as illustrated in Fig. 3, where38

G = {a, b}. All partitions of {1, 2, 3, 4}, excepting {{0, 2}, {1, 3}} which is displayed in39

red in Fig. 3, belong to PS(Ω). One can check that40

WS(S∗|PS(Ω),P
S(Ω)) = (1, 1, 1, 1)and SS(S∗|PS(Ω),P

S(Ω)) = (1, 2, 1, 1),

both of which being unimodal.41
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Example 5.5. Let Ω = {1, . . . , 6} and let S = 〈r, b〉 be the transformation semigroup1

acting on Ω as defined in Example 2.5. Simple calculations shows that PS(Ω) is given by2

{{{1}, {2}, {3}, {4}, {5}, {6}} , {{1, 2}, {3, 4}, {5, 6}} , {{1, 6}, {2, 3}, {4, 5}}} .

One can further check that WS(S∗|PS(Ω),P
S(Ω)) = SS(S∗|PS(Ω),P

S(Ω)) = (1, 0, 0, 1).3

If you delete those 0-entries (equivalently, adjusting the rank function for PS(Ω)), the4

resulting sequence (1, 1) is still unimodal.5

6 Linear space6

6.1 Top-heavy shape7

Let n be the size of a nonempty set Ω. Let k and ` be two integers satisfying 0 ≤ k ≤ ` ≤ n.8

Let q be a prime power. As q-analogues of the set incidence operator specified in Eq. (3.1),9

we define two linear transformations Mk,`
q,n : QP

k
q,n → QP

`
q,n and Nk,`

q,n : QA
k
q,n−1 →10

QA
`
q,n−1 as follows:11

(Mk,`
q,n(f))(Y )

.
=

∑
X≤Y,X∈Pk

q,n

f(X),

and12

(Nk,`
q,n(f ′))(Y ′)

.
=

∑
X′≤Y ′,X′∈Ak

q,n−1

f(X ′),

for all f ∈ QP
k
q,n , Y ∈ P`q,n and f ′ ∈ QA

k
q,n−1 , Y ′ ∈ A`q,n−1.13

Kantor [29, Theorem] obtained a q-analogue of Gottlieb’s Theorem [25, Corollary 2],14

which implies that Conjecture 3.4 holds for affine/projective geometries.15

Lemma 6.1 (Kantor). Let n be a positive integer. Let k and ` be two nonnegative integers16

such that k ≤ ` ≤ k + ` ≤ n and let q be any prime power. Then both Mk,`
q,n and Nk,`

q,n−117

are injective.18

Proof of Theorem 2.12. Let k and ` be two integers such that 0 ≤ k ≤ ` ≤ k + ` ≤ n.19

Note that SP ⊆ hEndk,`(Pq,n) and TA ⊆ hEndk,`(Aq,n−1). Since both Pq,n andAq,n−120

are (`, k)-finite, the result thus follows readily from Lemmas 3.2, 3.6 and 6.1.21

6.2 Duality: A result of Stanley22

First Proof of Theorem 2.16. Let F be a field and Ω be a set. For each linear subspace23

U ≤ FΩ, let U⊥ be the subspace of FΩ given by24

U⊥
.
= {f ∈ FΩ :

∑
ω∈Ω

f(ω)g(ω) = 0 for all g ∈ U}.

Take a matrix A ∈ FΩ×Ω and record its transpose by A>. For any f ∈ FΩ, which25

can be thought of as a row vector indexed by Ω, the image of f under the action of A,26

written as fA, can be thought of as the product of the row vector f and the matrix A.27

The matrix A induces a transformation Â on Gr(FΩ) such that U ∈ Gr(FΩ) is sent to28

UÂ
.
= {fA : f ∈ U}. It is easy to see that for any U,W ∈ Gr(V ) we have the29

implication30

UÂ = W =⇒W⊥Â> ≤ U⊥; (6.1)
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f Mk,`
q,n(f)

fg‡,k Mk,`
q,n(fg‡,k)

Mk,`
q,n

g‡,k

Mk,`
q,n

g‡,`

Figure 6: The incidence operator intertwines with every linear isomorphism g.

especially, when A ∈ GLn(F ) it holds1

UÂ = W ⇐⇒W⊥Â> = U⊥. (6.2)

According to Taussky and Zassenhaus [62, Theorem 1], we can find P ∈ GLn(F ) such
that P = P> and A> = PAP−1. This means that Eqs. (6.1) and (6.2) become

UÂ = W =⇒ (W⊥P̂ )Â ≤ U⊥P̂

and2

UÂ = W ⇐⇒ (W⊥P̂ )Â = U⊥P̂ , (6.3)

respectively. It is well-known that q-binomial coefficients (Gaussian coefficients) occur3

in pairs, namely in any n-dimensional linear space over a finite field, the number of k-4

dimensional subspaces is equal to the number of (n−k)-dimensional subspaces [24, Propo-5

sition 5.31] [59, §3]. In general, as a consequence of Eq. (6.3), for any A ∈ GLn(F ), the6

number of k-dimension subspaces of Fn fixed by Â equals to the number of (n − k)-7

dimension subspaces of Fn fixed by Â. If F is a finite field and G is a subgroup of8

GLn(F ), in view of the Orbit Counting Lemma (also known as Burnside’s Lemma), the9

above discussion leads to a proof of Theorem 2.16.10

Second Proof of Theorem 2.16. Let G ≤ GLn(Fq) and let k be a positive integer fulfilling11

k ≤ n
2 . The group G can be seen as a permutation group acting on both Gr(n− k,Fnq ) =12

Pkq,n and Gr(n− k,Fnq ) = Pn−kq,n ; we use Wk and Wn−k for the two permutation modules13

accordingly. From Lemma 6.1, we see that Mk,n−k
q,n is an Fq-linear isomorphism from14

Pkq,n to Pn−kq,n . From Fig. 5 and Example 3.7, we have the commutative diagram in Fig. 615

for 2 ≤ k ≤ n
2 ; assuming that g comes from the group G, clearly our deduction of Fig. 516

shows that Fig. 6 is also valid for k = 1. This then shows thatWk andWn−k are isomorphic17

permutation modules forG. In particular, the number of orbits ofG onPkq,n and the number18

of its orbits on Pn−kq,n must be equal.19

By examining the proofs of Theorem 2.16, we intend to understand the challenge of20

extending some results on group actions to that on semigroup actions. The above two21

proofs apply to a set of invertible linear operators over finite linear spaces. If we have a22

single linear operator A ∈ Matn(F ), by considering its action on the linear space obtained23

by “collapsing” the eventual kernel of A to zero, we can somehow still say something24
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similar to above. When we have a subsemigroup S of the full linear transformation monoid1

acting on a finite linear space, different elements of S may have different eventual kernels2

and that makes it nontrivial to glean global information about the semigroup action.3

7 Vámos matroid4

Proof of Example 2.18. A simple calculation shows that ker(ζk,`F(M)) = {0} for (k, `) ∈5

{(1, 2), (2, 3)}. Let f ∈ S and let f ′ : F(M) → F(M) be the map sending each flat6

X ∈ F(M) to the minimum flat containing Xf in M . By Lemma 3.2, we will be done if7

we can show that f ′ ∈ hEnd`,k(F(M)) for (k, `) = (1, 2), (2, 3).8

If we know that f is a bijection or that |EMf | ≤ 2, we can easily check that f ′ ∈9

hEnd`,k(F(M)), as wanted. We intend to find a contradiction under the hypothesis that10

neither of them holds.11

By assumption, we can take three distinct elements x, y, z in EMf such that |xf−1| ≥12

2. Let A be the minimum flat containing {x, y, z} and let B = Af−1. Observe that13

|A| ∈ {3, 4}. Since f is a strong map, B is a flat containing at least four elements and so14

|B| ∈ {4, 8}.15

CASE 1. |B| = 8.16

Take any X ∈
(
A
2

)
. Note that X must be a flat and thus so is Xf−1. Since |EMf | ≥ 3,17

we deduce that the flat Xf−1 is not equal to EM and so |Xf−1| ≤ 4. Considering that18

|A| ∈ {3, 4}, we find that |A| = 4 and each element in A has two perimages under f . Note19

that every element in
(
A
2

)
is a flat. It follows that {Xf−1 : X ∈

(
A
2

)
} is a set of six distinct20

flats and each of them contains four elements, which cannot happen for the Vámos matroid21

M .22

CASE 2. |B| = 4.23

Thanks to the assumption of |B| = 4, we see that C = {x, y} is a flat in M satisfying24

|Cf−1| = 3. Note that no three-elements subset of any four-elements flat in M can be a25

flat. This means thatCf−1 is not a flat, violating the assumption that f is a strong map.26

8 Concluding remarks27

We have discussed some top-heavy phenomena for transformation semigroups acting on28

Boolean semirings, affine/projective geometries, and flat lattice of Vámos matroid; see29

Theorems 2.1 and 2.12 and Example 2.18. But some problems remain, say Question 2.2,30

2.3 and 2.8, Conjecture 2.10 and Question 2.11, and Question 2.15. Our work relies on31

various injectivity results, say Lemmas 4.1, 5.3 and 6.1, which can all be read from Theo-32

rem 5.1 and Remark 5.2. We may think of Conjecture 3.4 as a natural companion to [27,33

Conjecture 7]. Since our results on comparing the number of components inside Pk and34

that of P` for various valuated posets P come from the injectivity of the relevant incidence35

operators (Lemma 3.2), we indeed have an injective map from components of Pk to that of36

P` which respects the poset structure. It is noteworthy that we do find any general results37

on the unimodality of the strong/weak shape of a semigroup action on a valuated poset to38

check whether or not find a39

Penttila and Siciliano [46, Lemma 3.1] suggested a machinery (Lemma 3.6) to remove40

certain finiteness assumption. But there are problems which we do not know how to solve41



Ars Math. Contemp. x (xxxx) 1–x 23

in that way, say Question 1.2 and 2.17. Since there are many other approaches to go from1

finite to infinite [52], it will be not a surprise if Question 1.2 has a positive solution as simple2

as that for Theorem 2.12. Here is another such question. By our definition, a valuated poset3

only has nonnegative integers as ranks of its elements. We may allow ranks to be any (not4

necessarily finite) cardinal number and then examine all the work in this paper again. At5

the end of Section 2.1, we list a few results of this kinds from the literature.6
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Siemons and Qing Xiang for useful discussions. Especially, Peter Šemrl reminded us the8
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