Road Coloring Problem for Completely Reachable Automata

Yinfeng Zhu
Institute of Natural Sciences and Mathematics
Ural Federal University
Ekaterinburg, Russia
yinfeng.zhu7@gmail.com

Abstract

Trahtman (2008) prove the Road Coloring Theorem which state that the edges of any given aperiodic directed multi-digraph with a constant out-degree d can be colored by d colors such that the resulting automaton admits a reset word. Bondar and Volkov (2016) asked an analogous question: characterize multi-digraphs that can be colored such that the resulting automaton is completely reachable. We show a necessary and sufficient condition for the multi-digraphs admit a completely reachable coloring. Moreover, this condition can be determine in polynomail time. For a fixed integer d, we show that to determine a given multi-digraph whether or not admit a completely reachable coloring within d colors is NP-complete. We also obtain a criterion for the multi-digraphs whose road colorings are all completely reachable.

1 Introduction

1.1 Automata, digraphs and road colorings

An deterministic finite automaton (DFA) is a triple $\mathscr{A}=(Q, \Sigma, \delta)$ where Q and Σ are finite non-empty sets and δ is a function from $Q \times \Sigma$ to Q. The elements of Q is called states; the elements of Σ is called letters; and the function δ is called the transition function of \mathscr{A}. Finite sequences (including the empty sequence denoted by ε) over Σ are called words over Σ. Write Σ^{*} for the set of all words over Σ.

The transition function δ extends to a function $Q \times \Sigma^{*} \rightarrow Q$ (still denoted by δ) via the recursion: for each $q \in Q, a \in \Sigma, w \in \Sigma^{*}$, set $\delta(q, \varepsilon)=q$ and $\boldsymbol{\delta}(q, w a)=\boldsymbol{\delta}(\boldsymbol{\delta}(q, w))$. For a subset $P \subseteq Q$ and $w \in \Sigma^{*}$, write $P . w$ for the set $\{p . w: p \in P\}$.

A subset $P \subseteq Q$ is called reachable in \mathscr{A}, if there exists a word $w \in \Sigma^{*}$ such that $P=\delta(Q, w)$. An automaton is called completely reachable if every non-empty subset of its state set is reachable. An automaton is called synchronizing if there exists a reachable singleton subset of states.

A digraph is a quadruple $G=(V, E, h, t)$ where V, E are non-empty sets and h, t are functions from E to V. The elements in V are called vertices of G and the elements of E are called edges of G. For an edge $e \in E$, the vertex $h(e)$ is called the head of e and the vertex $t(e)$ is called the tail of e. When there is no ambiguity, we will use $u v$ or (u, v) to denoted an edge e such that $h(e)=u$ and $t(e)=v$. For a subset $U \in V$, the out-neighbour of U is the set $\{h(e): t(e) \in U, e \in E\}$, denoted $\mathrm{N}_{G}^{+}(U)$; the in-neighbour of U is the set $\{t(e): h(e) \in U, e \in E\}$, denoted $\mathrm{N}_{G}^{-}(U)$; For a vertex $v \in V$, the out-degree of v is the number of edges whose head is v, denoted $\mathrm{d}_{+}(v)$; the in-degree of v is the number of edges whose tail is v, denoted $\mathrm{d}_{-}(v)$. A digraph is called aperiodic if the greatest common divisor of lengths of all directed cycles in the digraph equals to 1 .

For a set X, the power set of X is the set consisting all subset of X, denoted $\mathscr{P}(X)$.
A road coloring of a finite digraph $G=(V, E, h, t)$ over a set Σ is a function $\alpha: E \rightarrow \mathscr{P}(\Sigma)$ such that for every vertex $v \in V$, the family of sets $\{\alpha(e)\}_{e \in E}$ forms a partition of Σ. The elements in Σ are called colors.

Let $\alpha: \Sigma \rightarrow \mathscr{P}(E)$ be a road coloring of a digraph $G=(V, E, h, t)$. A DFA is obtained from G and α. Define $\mathscr{A}(G, \alpha)$ to be the automaton (V, Σ, δ) such that for every $v \in V$ and $a \in \Sigma$, we have $v . a=t(e)$ where e is the unique edge such that $a \in \alpha(e)$. We say that α is a synchronzing coloring of G if $\mathscr{A}(G, \alpha)$ is synchronizing; α is a completely reachable coloring if $\mathscr{A}(G, \alpha)$ is a completely reachable automaton.

The Road Coloring Theorem can be stated as follows.
Theorem 1 (Trahtman [5]). Let $G=(V, E, h, t)$ be a strongly connected digraph and $d=\max \left\{\mathrm{d}_{+}(v), v \in\right.$ $V\}$. The following are equivalent.
(1) The digraph G admits a synchronizing coloring.
(2) The digraph G admits a synchronizing coloring with d colors.
(3) The digraph G is aperiodic.

As it was conjectured by Adler, Goodwyn, and Weiss [1], the Road Coloring Theorem provides the necessary and sufficient condition for a strongly connected digraph G admitting a synchronizing coloring with d colors.

1.2 Main results

Bondar and Volkov [2] ask an analogous question for completely reachable colorings. They found an interesting and non-parallel phenomena that there are some digraphs that have no completely reachable coloring with 2 letters but admit a completely reachable coloring with 3 letters. In this article, we study on Bondar-Volkov's question.

If we have no restrictions on the number of colors, we can obtain the necessary and sufficient condition for a digraph admitting a completely reachabel coloring.

Theorem 2. A digraph $G=(V, E, i, t)$ admits a completely reachable coloring if and only if
(1) G is strongly connected,
(2) G is aperiodic,
(3) for every subset $U \subseteq V,|U| \leq\left|\mathrm{N}_{-}(U)\right|$.

These conditions can be determined in polynomial-time. This is obivious for the first and second conditions. The third condition is equivalent to whether a derived bipartite graph (of polynomial size) has a perfect matching.

However, for a fixed integer $d \geq 2$, it is hard to determine whether a given digraph whether or not admit a completely reachabel coloring with d colors.

Theorem 3. Let $d \geq 2$ be an integer. To determine a given digraph whether or not it admits a completely reachable with d colors is NP-complete.

We obtain a criterion for determining whether a digraph whose road colorings are all completely reachable.

The remaining of this article will proceed as follows. In Section 2, using two fundamental graph theoretical results, we present a proof of Theorem 2. In Section 3, based on a reduction of Plesńik [4], we prove Theorem 3. In Section 4, we show a criterion for the digraphs whose road colorings are all completely reachable.

2 Proof of Theorem 2

Let us recall two fundamental graph theoretical results which will be used in the proof of Theorem 2 .
The period of a strongly connected digraph G is the greatest common divisor of the lengths of its cycles, denoted $p(G)$. The following result is well-known.
Theorem 4. Let G be a strongly connected digraph of period p. The vertex set can be partition into p sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{G}^{+}\left(C_{i}\right)=C_{i+1}$ for every $i \in \mathbb{Z}_{p}$. Moreover, for each vertex v and $i \in \mathbb{Z}_{p}$, there exists an integer $k \geq 0$ such that

$$
\underbrace{N_{G}^{+} \cdots N_{G}^{+}}_{k}(v)=C_{i} .
$$

A bipartite graph $H=(X, Y, E)$ is a triple, where X, Y are two nonempty set and $E \subseteq X \times Y$. The elements in $X \cup Y$ are vertices and the elements in E are edges. An X-perfect matching of H is a matching, a set of disjoint edges. which covers every vertex in X. For $U \subseteq X$, the neighborhood of U is the set $\{v:(u, v) \in E, u \in U\}$, denoted $\mathrm{N}_{H}(U)$.
Theorem 5 (Hall's Marriage Theorem). Let $H=(X, Y, E)$ be a bipartite graph. There exists an X-perfect matching in H if and only if for every subset $U \subseteq X$, we have $|U| \leq \mathrm{N}_{H}(U)$.

Next, we prove Theorem 2 .
Proof of Theorem 2 " \Rightarrow ": Let α be a completely reachable coloring of G and its color set is Σ. The corresponding autoaton is $\mathscr{A}(G, \alpha)=(V, \Sigma, \delta)$. For arbitrary vertices u and v, by completely reachability, there exists a word w such that $V \cdot w=u$ and then $v \cdot w=u$. Then there exists a walk in G from v to u. Hence G is strongly connected.

By Theorem 4 the vertex set V can be partitioned into $p=p(G)$ sets $\left\{C_{i}: i \in \mathbb{Z}_{p}\right\}$ such that $N_{G}^{+}\left(C_{i}\right)=$ C_{i+1} for every $i \in \mathbb{Z}_{p}$. Then for any words $w \in \Sigma^{*}$ and $i \in \mathbb{Z}_{p}, V . w \cap C_{i} \neq \emptyset$. Since $\mathscr{A}(G, \alpha)$ is completely reachable, every singleton set is reachable. Hence $p=1$ which is equivalent to G is aperiodic.

For a non-empty subset $U \subseteq V$, take a word $w=w^{\prime} a \in \Sigma^{*}$ such that $V . w=U$. Let W be the set $V . w^{\prime}$. Then

$$
|U| \leq|W| \leq\left|\mathrm{N}_{G}^{-}(U)\right| .
$$

" \Leftarrow ": Define H to be the bipartite graph $H=\left(V_{1}, V_{2}, E_{H}\right)$ such that $V_{1}=V_{2}=V$ and $E_{H}=\{(h(e), t(e))$: $e \in E\}$. Then for every non-empty subset $U \subseteq V_{1}$, then $|U| \leq\left|\mathrm{N}_{H}(U)\right|$. Let W be a non-empty subset of V_{1}. Let H^{\prime} be the induced subgraph of H on $W \cup \mathrm{~N}_{H}(W)$. By the Theorem 5 , there exists a W-perfect matching M in H^{\prime}. Now we can define a function $f_{W}: V_{2} \rightarrow V_{1}$ as following:
(1) for $x \in V_{2}$ which is covered by an edge $\{x, y\} \in M$, set $f_{W}(x)=y$;
(2) for $x \in \mathrm{~N}_{H}(W)$ which is not covered by the matching M, set $f_{W}(x)$ to be an arbitrary vertex in $W \cap \mathrm{~N}_{G}^{+}(x)$.
(3) for $x \in V_{2} \backslash \mathrm{~N}_{H}(W)$, set $f_{W}(x)$ to be an arbitrary vertex in $\mathrm{N}_{G}^{+}(x)$.

It is clear that $W=f_{W}\left(\mathrm{~N}_{G}^{-}(W)\right)$.
Now we construct a road coloring $\alpha: E \rightarrow \mathscr{P}(\Sigma)$, where $\Sigma=\mathscr{P}(V) \backslash\{\emptyset\}$ by setting

$$
\alpha(e)=\left\{U: f_{U}(h(e))=t(e), \emptyset \neq U \subseteq V\right\} .
$$

Let $\mathscr{A}=(V, \Sigma, \delta)=\mathscr{A}(G, \alpha)$. Note that for every non-empty subset U, we have

$$
\delta\left(N_{G}^{-}(U), U\right)=U .
$$

Let U_{0} be an arbitrary non-empty subset of V, define $U_{i}=\mathrm{N}_{G}^{-}\left(U_{i-1}\right)$ for all positive integer i. Since G is strongly connected and aperiodic, there exists an integer k such that $U_{k}=V$. Then U_{0} is reachable via the word $U_{k-1} U_{k-2} \cdots U_{1} U_{0}$. Hence \mathscr{A} is completely reachable and G admits a completely reachable coloring.

Remark 6. Using the notations of the proof of Theorem 2 observe that G satisfies the third condition in Theorem 2 if and only if H has a perfect matching. Then there exists a polynomial-time algorithm (see [3]) to determine whether G satisfies the third condition in Theorem 2 ,

3 Proof of Theorem 3

Let $\mathscr{A}=(V, \Sigma, \delta)$ be a DFA. For a letter $a \in \Sigma$, the defect of a is the integer $|V|-|V \cdot w|$, denoted $\operatorname{defect}(a)$.
Lemma 7. Let Σ be a k-element set. Assume that $G=(V, E, h, t)$ is k-out-regular digraph and α is a road coloring of G with the color set Σ. Let $\mathscr{A}=\mathscr{A}(G, \alpha)$. Then

$$
\sum_{v \in V} \max \left(0,\left(k-\mathrm{d}_{G}^{-}(v)\right)\right) \leq \sum_{a \in \Sigma} \operatorname{defect}(a) .
$$

Proof. For each $a \in \Sigma$, let G_{a} be the sub-digraph of G containing all vertices of G and edges which color a. It is clear that defect (a) equals the number of vertices whose in-degree is zero in G_{a}. Since $|\Sigma|=k$ and G is k-out-regular, $\alpha(e)$ is a singleton set for every $e \in E$. Then, for every vertex v,

$$
\left|\left\{a \in \Sigma: \mathrm{d}_{G_{a}}^{-}(v)=0\right\}\right| \geq k-\mathrm{d}_{G}^{-}(v)
$$

Using double counting argument, we have

$$
\sum_{a \in \Sigma} \operatorname{defect}(a) \geq \sum_{v \in V} \max \left(0, k-\mathrm{d}_{G}^{-}(v)\right) .
$$

Lemma 8. Let $k \geq 2$. Let $G=(V, E, h, t)$ be a digraph satisfying the following conditions.
(1) $|V|=n$ is a prime number and $|V|>k$.
(2) For every vertex $v, \mathrm{~d}_{G}^{+}(v)=k$.
(3) There exists a vertices x such that there are at least $k-2$ edges from v to x for every $v \in V$.
(4) Let G^{\prime} be a digraph which is obtained from G by deleting $k-2$ edge from v to x for every $v \in V$. In the digraph G^{\prime}, we have

- $\mathrm{d}_{G^{\prime}}^{-}(x)=1$,
- there exists a vertex y such that $\mathrm{d}_{G^{\prime}}^{-}(y)=3$,
- for each $z \in V \backslash\{x, y\}, \mathrm{d}_{G^{\prime}}^{-}(z)=2$.

Then G admits a completely reachable coloring with k colors if and only if G has a Hamitonian cycle.
Proof. " \Rightarrow ": Let Σ be a k-element set. Let α be a completely reachable coloring with the color set Σ. Since $n>k$, there exists a color of defect 0 , denoted a and a color of defect 1 , denoted b.

Claim 9. For all $c \in \Sigma \backslash\{a, b\}$, $\operatorname{defect}(c) \geq 2$.

Proof. Assume, for a contradiction, there exists a color $c \in \Sigma$ such that $c \notin\{a, b\}$ and $\operatorname{defect}(c)=1$. By Lemma 7, we have

$$
\sum_{x \in \Sigma} \operatorname{defect}(x) \geq \sum_{v \in V} \max \left(0, k-\mathrm{d}_{G}^{-}(v)\right) \geq(n-1)(k-2) .
$$

Meanwhile,

$$
\sum_{x \in \Sigma} \operatorname{defect}(x) \leq(n-1)(k-3)+0+1+1=(n-1)(k-2)-(n-3) .
$$

This is a contradiction.
Since α is completely reachable, every n - 1 -element subset of V is reachable. Then the action of a is a cyclic permutation. Hence, the edges in G_{a} form a Hamiltonian cycle.
$" \Leftarrow "$: Let C be a hamitonian cycle. Color the edges in C by c. Let D be the set of edges of G^{\prime} but not belongs to C.
Case 1. Every edge of C is in G^{\prime}.
Color the edges in D by d. The action of d is clearly 1 -defect. We color the other edges such that α is a road coloring. Since n is prime, one can check that α is completely reachable.
Case 2. There exists an edge $e \in C$ such that $e \notin G^{\prime}$.
Let $G^{\prime \prime}$ be the digraph on vertex set V and edge set D. Note that $G^{\prime \prime}$ has $n+1$ edges and we have

- $\mathrm{d}_{G^{\prime \prime}}^{-}(x)=2$ and $\mathrm{d}_{G^{\prime \prime}}^{-}(z)=1$ for all $z \neq x$;
- $\mathrm{d}_{G^{\prime \prime}}^{+}(y)=2$ and $\mathrm{d}_{G^{\prime \prime}}^{-}(z)=1$ for all $z \neq y$.

Let e be an edge such that $t(e)=y$. Color the edges in $D-e$ by d. The action of d is clearly 1 -defect. We color the other edges such that α is a road coloring. Since n is prime, one can check that α is completely reachable.

The problems of determining the existance of Hamiltonian cycles (paths, resp.) for a given digraph is denoted by HCP (HPP, resp.).

In [4], the Plesník shows polynomial transformations from SAT to HCP (and HPP) for a special class of digraphs. Our proof of Theorem 3 is obtained from Plesńik reduction by some small modifications. For convenience, let us define a digraph operator Replace. Let $G=\left(V_{G}, E_{G}, h_{G}, t_{G}\right)$ and $H=\left(V_{H}, E_{H}, h_{H}, t_{H}\right)$ be two digraphs. Let $v \in V_{G}$ and $x, y \in V_{H}$. Define Replace (G, v, H, x, y) to be the digraph $\left(V_{G} \cup V_{H} \backslash\right.$ $\left.\{v\}, E_{G} \cup E_{H}, h, t\right)$ such that

$$
h(e)= \begin{cases}h_{G}(e) & \text { if } e \in E_{G} \text { and } h_{G}(e) \neq v \\ h_{H}(e) & \text { if } e \in E_{H} \\ x_{2} & \text { otherwise }\end{cases}
$$

and

$$
t(e)= \begin{cases}t_{G}(e) & \text { if } e \in E_{G} \text { and } t_{G}(e) \neq v \\ t_{H}(e) & \text { if } e \in E_{H} \\ x_{1} & \text { otherwise }\end{cases}
$$

Proof of Theorem 3 For a Boolean formula F, Plesník constructed a digraph $G=(V, E, h, t)$ such that F is satisfiable if and only if G has a Hamiltonian path. The digraph G satisfies the properties: the size of G is at most a polynomial of the size of F; for every vertex v in G, either $\mathrm{d}_{G}^{-}(v)=1, \mathrm{~d}_{G}^{+}(v)=2$ or $\mathrm{d}_{G}^{-}(v)=2, \mathrm{~d}_{G}^{+}(v)=1$.

Write E_{1} for the set $\left\{e \in E: \mathrm{d}_{G}^{+}(e)=1\right\}$. Define G_{1} to be the digraph that adding a copy for each edge in E_{1} into G. It is easy to check that for every vertex v of $G_{1}, \mathrm{~d}_{G_{1}}^{+}=\mathrm{d}_{G_{1}}^{-}=2$.

Let H be the digraph with vertex set $\left\{x_{1}, x_{2}, x_{3}\right\}$ and edge set $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that $h\left(e_{1}\right)=h\left(e_{2}\right)=$ $h\left(e_{3}\right)=x_{1}, h\left(e_{4}\right)=x_{2}, t\left(e_{1}\right)=t\left(e_{2}\right)=x_{2}$ and $t\left(e_{3}\right)=t\left(e_{4}\right)=x_{3}$. Choose an arbitrary vertex v of G_{1}. Define $G_{2}=$ Replace $\left(G_{1}, v, H, x_{1}, x_{2}\right)$.

For a positive integer n, define P_{n} to be the digraph with vertex set $\left\{x_{1}, \ldots, x_{n+1}\right\}$ and having two edge from x_{i} to x_{i+1} for all $1 \leq i \leq n$. Choose a vertex u of G_{2} such that $\mathrm{d}_{G_{2}}^{+}(u)=\mathrm{d}_{G_{2}}^{-}(u)=2$. Define $G_{3}=\operatorname{Replace}\left(G_{2}, u, P_{m}, x_{1}, x_{n+1}\right)$, where m is the least positive integer such that $m+\left|V_{G_{2}}\right|$ is a prime. It is routine to check

- G_{3} has a Hamitonian path if and only G has a Hamitonian path;
- there exist vertices x and y such that $\mathrm{d}_{G_{3}}^{-}(x)=1$ and $\mathrm{d}_{G_{3}}^{-}(y)=3$;
- for each $z \in V \backslash\{x, y\}, \mathrm{d}_{G_{3}}^{-}(z)=2$;
- for each $z \in V, \mathrm{~d}_{G_{3}}^{+}(z)=2$;

Define G_{4} to be the digraph which is obtained from G_{3} by adding $k-2$ edge from v to x for every vertex v of G_{3}. Observe that G_{4} has a Hamitonian cycle if and only if G_{3} has a Hamitonian path. Note that G_{4} fulfills all properties in Lemma 8 . Hence, we polynomially transform the SAT problem to the problem of determining the existance of completely reachable coloring for a digraph.

4 Digraphs satisfying all road colorings are completely reachable

Let $\mathscr{A} \mathscr{R} \mathscr{C}$ be the family of digraphs consisting the digraphs whose road colorings are all completely reachable.

Use \oplus to stand for addition modulo n. Let S be a subset of $\left(\mathbb{Z}_{n}, \oplus\right)$. Let $G(S, n)$ be the digraph with the vertex set \mathbb{Z}_{n} and the edge set $\left\{(i, i+1): i \in \mathbb{Z}_{n}\right\} \cup\{(n-1, s): s \in S\}$.
Theorem 10. Let G be a digraph with n vertices. The digraph G is in $\mathscr{A} \mathscr{R} \mathscr{C}$ if and only if there exists $S \subseteq \mathbb{Z}_{n}$ such that $\langle S, \oplus\rangle=\left(\mathbb{Z}_{n}, \oplus\right)$ and G is isomorphic to $G(S, n)$.
Lemma 11. Let G be a digraph with n vertices. If $G=(V, E, h, t) \in \mathscr{A} \mathscr{R} \mathscr{C}$, then there exists a unique vertex v such that $\mathrm{N}_{G}^{+}(v)>1$. Moreover, G contains a hamitonian cycle.

Proof. By Theorem 2, G is strongly connected. Then every vertex has at least one out-neighbour. Assume, for contradiction, that there exists two distinct vertices u and v such that $\mathrm{N}_{G}^{+}(v)>1$ and $\mathrm{N}_{G}^{+}(u)>1$.

Let $H=\left(V_{1}, V_{2}, E_{H}\right)$ be the bipartite graph corresponding to G which is define in the proof of Theorem2. By Theorem2, H has a V_{1}-perfect matching M. Write $M(v)$ for the vertex such that $(v, M(v)) \in M$. For every edge $e=\left(x_{1}, x_{2}\right) \in E_{H} \backslash M$, we can find an edge $\left(y_{1}, y_{2}\right) \notin M$ and $y_{1} \neq x_{1}$ and let

$$
M_{e}=M \cup\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\} \backslash\left\{\left(x_{1}, M\left(x_{1}\right)\right),\left(y_{1}, M\left(y_{1}\right)\right)\right\} .
$$

Let $\mathscr{M}=\{M\} \cup\left\{M_{e}: e \in E_{H} \backslash M\right\}$.
For every $e \in E$, write \bar{e} for the edge $(h(e), t(e)) \in E_{H}$. Define $\alpha: E \rightarrow \mathscr{M}$ as the function such that

$$
\alpha(e)=\{N \in \mathscr{M}: \bar{e} \in N\} .
$$

It is clear that α is a road coloring of G. Let $\mathscr{A}=\mathscr{A}(G, \alpha)$. Note that the action of M is a bijection and for all $e \in E_{H}$, the defect of the action of M_{e} is 2 . Observe that every $(n-1)$-element subset is not reachable in \mathscr{A} which is a contradiction.

Since G is strongly connected has a unique vertex of out-degree ≥ 1, the digraph G has a hamitonian cycle.

Proof of Theorem 10 " \Leftarrow ": It is trivial.
" \Rightarrow ": By Lemma 11 , we have G is isomorphic to $G(S, n)$ for some subset $S \subseteq \mathbb{Z}_{n}$. Let $K=\langle S, \oplus\rangle$. It is clear that the period of G equals $\frac{n}{|K|}$. By Theorem $10, K=\left(\mathbb{Z}_{n}, \oplus\right)$.

Acknowledgments

I thank Prof. Mikhail V. Volkov for introducing this problem to me and valuable discussions.

References

[1] Roy L Adler, L Wayne Goodwyn \& Benjamin Weiss (1977): Equivalence of topological Markov shifts. Israel Journal of Mathematics 27, pp. 49-63.
[2] Eugenija A. Bondar \& Mikhail V. Volkov (2016): Completely reachable automata. In: Descriptional complexity of formal systems, Lecture Notes in Comput. Sci. 9777, Springer, [Cham], pp. 1-17, doi 10.1007/978-3-319-41114-9_1.
[3] Alan Gibbons (1985): Algorithmic graph theory. Cambridge University Press, Cambridge.
[4] J. Plesńik (1979): The np-completeness of the hamiltonian cycle problem in planar diagraphs with degree bound two. Information Processing Letters 8(4), pp. 199-201, doi 10.1016/0020-0190(79)90023-1.
[5] Avraham N Trahtman (2009): The road coloring problem. Israel Journal of Mathematics 172, pp. 51-60.

