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Trahtman (2008) prove the Road Coloring Theorem which state that the edges of any given aperiodic
directed multi-digraph with a constant out-degree d can be colored by d colors such that the resulting
automaton admits a reset word. Bondar and Volkov (2016) asked an analogous question: character-
ize multi-digraphs that can be colored such that the resulting automaton is completely reachable. We
show a necessary and sufficient condition for the multi-digraphs admit a completely reachable color-
ing. Moreover, this condition can be determine in polynomail time. For a fixed integer d, we show
that to determine a given multi-digraph whether or not admit a completely reachable coloring within
d colors is NP-complete. We also obtain a criterion for the multi-digraphs whose road colorings are
all completely reachable.

1 Introduction

1.1 Automata, digraphs and road colorings

An deterministic finite automaton (DFA) is a triple A = (Q,Σ,δ ) where Q and Σ are finite non-empty
sets and δ is a function from Q×Σ to Q. The elements of Q is called states; the elements of Σ is called
letters; and the function δ is called the transition function of A . Finite sequences (including the empty
sequence denoted by ε) over Σ are called words over Σ. Write Σ∗ for the set of all words over Σ.

The transition function δ extends to a function Q×Σ∗→Q (still denoted by δ ) via the recursion: for
each q ∈ Q, a ∈ Σ, w ∈ Σ∗, set δ (q,ε) = q and δ (q,wa) = δ (δ (q,w)). For a subset P ⊆ Q and w ∈ Σ∗,
write P.w for the set {p.w : p ∈ P}.

A subset P ⊆ Q is called reachable in A , if there exists a word w ∈ Σ∗ such that P = δ (Q,w). An
automaton is called completely reachable if every non-empty subset of its state set is reachable. An
automaton is called synchronizing if there exists a reachable singleton subset of states.

A digraph is a quadruple G = (V,E,h, t) where V,E are non-empty sets and h, t are functions from
E to V . The elements in V are called vertices of G and the elements of E are called edges of G. For an
edge e ∈ E, the vertex h(e) is called the head of e and the vertex t(e) is called the tail of e. When there is
no ambiguity, we will use uv or (u,v) to denoted an edge e such that h(e) = u and t(e) = v. For a subset
U ∈ V , the out-neighbour of U is the set {h(e) : t(e) ∈ U,e ∈ E}, denoted N+

G(U); the in-neighbour
of U is the set {t(e) : h(e) ∈U,e ∈ E}, denoted N−G(U); For a vertex v ∈ V , the out-degree of v is the
number of edges whose head is v, denoted d+(v); the in-degree of v is the number of edges whose tail is
v, denoted d−(v). A digraph is called aperiodic if the greatest common divisor of lengths of all directed
cycles in the digraph equals to 1.

For a set X , the power set of X is the set consisting all subset of X , denoted P(X).
A road coloring of a finite digraph G = (V,E,h, t) over a set Σ is a function α : E→P(Σ) such that

for every vertex v ∈V , the family of sets {α(e)}e∈E forms a partition of Σ. The elements in Σ are called
colors.
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Let α : Σ→P(E) be a road coloring of a digraph G = (V,E,h, t). A DFA is obtained from G and
α . Define A (G,α) to be the automaton (V,Σ,δ ) such that for every v ∈V and a ∈ Σ, we have v.a = t(e)
where e is the unique edge such that a ∈ α(e). We say that α is a synchronzing coloring of G if A (G,α)
is synchronizing; α is a completely reachable coloring if A (G,α) is a completely reachable automaton.

The Road Coloring Theorem can be stated as follows.

Theorem 1 (Trahtman [5]). Let G = (V,E,h, t) be a strongly connected digraph and d = max{d+(v),v∈
V}. The following are equivalent.

(1) The digraph G admits a synchronizing coloring.

(2) The digraph G admits a synchronizing coloring with d colors.

(3) The digraph G is aperiodic.

As it was conjectured by Adler, Goodwyn, and Weiss [1], the Road Coloring Theorem provides the
necessary and sufficient condition for a strongly connected digraph G admitting a synchronizing coloring
with d colors.

1.2 Main results

Bondar and Volkov [2] ask an analogous question for completely reachable colorings. They found an
interesting and non-parallel phenomena that there are some digraphs that have no completely reachable
coloring with 2 letters but admit a completely reachable coloring with 3 letters. In this article, we study
on Bondar-Volkov’s question.

If we have no restrictions on the number of colors, we can obtain the necessary and sufficient condi-
tion for a digraph admitting a completely reachabel coloring.

Theorem 2. A digraph G = (V,E, i, t) admits a completely reachable coloring if and only if

(1) G is strongly connected,

(2) G is aperiodic,

(3) for every subset U ⊆V , |U | ≤ |N−(U)|.

These conditions can be determined in polynomial-time. This is obivious for the first and second
conditions. The third condition is equivalent to whether a derived bipartite graph (of polynomial size)
has a perfect matching.

However, for a fixed integer d ≥ 2, it is hard to determine whether a given digraph whether or not
admit a completely reachabel coloring with d colors.

Theorem 3. Let d ≥ 2 be an integer. To determine a given digraph whether or not it admits a completely
reachable with d colors is NP-complete.

We obtain a criterion for determining whether a digraph whose road colorings are all completely
reachable.

The remaining of this article will proceed as follows. In Section 2, using two fundamental graph
theoretical results, we present a proof of Theorem 2. In Section 3, based on a reduction of Plesńik [4],
we prove Theorem 3. In Section 4, we show a criterion for the digraphs whose road colorings are all
completely reachable.
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2 Proof of Theorem 2

Let us recall two fundamental graph theoretical results which will be used in the proof of Theorem 2.
The period of a strongly connected digraph G is the greatest common divisor of the lengths of its

cycles, denoted p(G). The following result is well-known.

Theorem 4. Let G be a strongly connected digraph of period p. The vertex set can be partition into p
sets {Ci : i ∈ Zp} such that N+

G (Ci) =Ci+1 for every i ∈ Zp. Moreover, for each vertex v and i ∈ Zp, there
exists an integer k ≥ 0 such that

N+
G · · ·N

+
G︸ ︷︷ ︸

k

(v) =Ci.

A bipartite graph H = (X ,Y,E) is a triple, where X ,Y are two nonempty set and E ⊆ X ×Y . The
elements in X∪Y are vertices and the elements in E are edges. An X-perfect matching of H is a matching,
a set of disjoint edges. which covers every vertex in X . For U ⊆ X , the neighborhood of U is the set
{v : (u,v) ∈ E,u ∈U}, denoted NH(U).

Theorem 5 (Hall’s Marriage Theorem). Let H = (X ,Y,E) be a bipartite graph. There exists an X-perfect
matching in H if and only if for every subset U ⊆ X, we have |U | ≤ NH(U).

Next, we prove Theorem 2.

Proof of Theorem 2. “⇒”: Let α be a completely reachable coloring of G and its color set is Σ. The
corresponding autoaton is A (G,α) = (V,Σ,δ ). For arbitrary vertices u and v, by completely reachability,
there exists a word w such that V.w = u and then v.w = u. Then there exists a walk in G from v to u.
Hence G is strongly connected.

By Theorem 4, the vertex set V can be partitioned into p= p(G) sets {Ci : i∈Zp} such that N+
G (Ci) =

Ci+1 for every i ∈ Zp. Then for any words w ∈ Σ∗ and i ∈ Zp, V.w∩Ci 6= /0. Since A (G,α) is completely
reachable, every singleton set is reachable. Hence p = 1 which is equivalent to G is aperiodic.

For a non-empty subset U ⊆V , take a word w = w′a ∈ Σ∗ such that V.w =U . Let W be the set V.w′.
Then

|U | ≤ |W | ≤ |N−G(U)|.

“⇐”: Define H to be the bipartite graph H =(V1,V2,EH) such that V1 =V2 =V and EH = {(h(e), t(e)) :
e ∈ E}. Then for every non-empty subset U ⊆ V1, then |U | ≤ |NH(U)|. Let W be a non-empty subset
of V1. Let H ′ be the induced subgraph of H on W ∪NH(W ). By the Theorem 5, there exists a W -perfect
matching M in H ′. Now we can define a function fW : V2→V1 as following:

(1) for x ∈V2 which is covered by an edge {x,y} ∈M, set fW (x) = y;

(2) for x ∈ NH(W ) which is not covered by the matching M, set fW (x) to be an arbitrary vertex in
W ∩N+

G(x).

(3) for x ∈V2 \NH(W ), set fW (x) to be an arbitrary vertex in N+
G(x).

It is clear that W = fW (N−G(W )).
Now we construct a road coloring α : E→P(Σ), where Σ = P(V )\{ /0} by setting

α(e) = {U : fU(h(e)) = t(e), /0 6=U ⊆V}.

Let A = (V,Σ,δ ) = A (G,α). Note that for every non-empty subset U , we have

δ (N−G (U),U) =U.
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Let U0 be an arbitrary non-empty subset of V , define Ui = N−G(Ui−1) for all positive integer i. Since G
is strongly connected and aperiodic, there exists an integer k such that Uk = V . Then U0 is reachable
via the word Uk−1Uk−2 · · ·U1U0. Hence A is completely reachable and G admits a completely reachable
coloring.

Remark 6. Using the notations of the proof of Theorem 2, observe that G satisfies the third condition in
Theorem 2 if and only if H has a perfect matching. Then there exists a polynomial-time algorithm (see
[3]) to determine whether G satisfies the third condition in Theorem 2.

3 Proof of Theorem 3

Let A = (V,Σ,δ ) be a DFA. For a letter a∈ Σ, the defect of a is the integer |V |−|V.w|, denoted defect(a).

Lemma 7. Let Σ be a k-element set. Assume that G = (V,E,h, t) is k-out-regular digraph and α is a
road coloring of G with the color set Σ. Let A = A (G,α). Then

∑
v∈V

max(0,(k−d−G(v)))≤ ∑
a∈Σ

defect(a).

Proof. For each a ∈ Σ, let Ga be the sub-digraph of G containing all vertices of G and edges which color
a. It is clear that defect(a) equals the number of vertices whose in-degree is zero in Ga. Since |Σ| = k
and G is k-out-regular, α(e) is a singleton set for every e ∈ E. Then, for every vertex v,∣∣{a ∈ Σ : d−Ga

(v) = 0}
∣∣≥ k−d−G(v).

Using double counting argument, we have

∑
a∈Σ

defect(a)≥ ∑
v∈V

max
(
0,k−d−G(v)

)
.

Lemma 8. Let k ≥ 2. Let G = (V,E,h, t) be a digraph satisfying the following conditions.

(1) |V |= n is a prime number and |V |> k.

(2) For every vertex v, d+G(v) = k.

(3) There exists a vertices x such that there are at least k−2 edges from v to x for every v ∈V .

(4) Let G′ be a digraph which is obtained from G by deleting k− 2 edge from v to x for every v ∈ V .
In the digraph G′, we have

• d−G′(x) = 1,
• there exists a vertex y such that d−G′(y) = 3,
• for each z ∈V \{x,y}, d−G′(z) = 2.

Then G admits a completely reachable coloring with k colors if and only if G has a Hamitonian cycle.

Proof. “⇒”: Let Σ be a k-element set. Let α be a completely reachable coloring with the color set Σ.
Since n > k, there exists a color of defect 0, denoted a and a color of defect 1, denoted b.

Claim 9. For all c ∈ Σ\{a,b}, defect(c)≥ 2.
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Proof. Assume, for a contradiction, there exists a color c ∈ Σ such that c /∈ {a,b} and defect(c) = 1. By
Lemma 7, we have

∑
x∈Σ

defect(x)≥ ∑
v∈V

max(0,k−d−G(v))≥ (n−1)(k−2).

Meanwhile,
∑
x∈Σ

defect(x)≤ (n−1)(k−3)+0+1+1 = (n−1)(k−2)− (n−3).

This is a contradiction.

Since α is completely reachable, every n−1-element subset of V is reachable. Then the action of a
is a cyclic permutation. Hence, the edges in Ga form a Hamiltonian cycle.

“⇐”: Let C be a hamitonian cycle. Color the edges in C by c. Let D be the set of edges of G′ but not
belongs to C.
Case 1. Every edge of C is in G′.

Color the edges in D by d. The action of d is clearly 1-defect. We color the other edges such that α

is a road coloring. Since n is prime, one can check that α is completely reachable.
Case 2. There exists an edge e ∈C such that e /∈ G′.

Let G′′ be the digraph on vertex set V and edge set D. Note that G′′ has n+1 edges and we have

• d−G′′(x) = 2 and d−G′′(z) = 1 for all z 6= x;

• d+G′′(y) = 2 and d−G′′(z) = 1 for all z 6= y.

Let e be an edge such that t(e) = y. Color the edges in D−e by d. The action of d is clearly 1-defect. We
color the other edges such that α is a road coloring. Since n is prime, one can check that α is completely
reachable.

The problems of determining the existance of Hamiltonian cycles (paths, resp.) for a given digraph
is denoted by HCP (HPP, resp.).

In [4], the Plesńik shows polynomial transformations from SAT to HCP (and HPP) for a special class
of digraphs. Our proof of Theorem 3 is obtained from Plesńik reduction by some small modifications. For
convenience, let us define a digraph operator Replace. Let G = (VG,EG,hG, tG) and H = (VH ,EH ,hH , tH)
be two digraphs. Let v ∈ VG and x,y ∈ VH . Define Replace(G,v,H,x,y) to be the digraph (VG ∪VH \
{v},EG∪EH ,h, t) such that

h(e) =


hG(e) if e ∈ EG and hG(e) 6= v
hH(e) if e ∈ EH

x2 otherwise

and

t(e) =


tG(e) if e ∈ EG and tG(e) 6= v
tH(e) if e ∈ EH

x1 otherwise.

Proof of Theorem 3. For a Boolean formula F , Plesńik constructed a digraph G = (V,E,h, t) such that
F is satisfiable if and only if G has a Hamiltonian path. The digraph G satisfies the properties: the size
of G is at most a polynomial of the size of F ; for every vertex v in G, either d−G(v) = 1, d+G(v) = 2 or
d−G(v) = 2, d+G(v) = 1.
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Write E1 for the set {e ∈ E : d+G(e) = 1}. Define G1 to be the digraph that adding a copy for each
edge in E1 into G. It is easy to check that for every vertex v of G1, d+G1

= d−G1
= 2.

Let H be the digraph with vertex set {x1,x2,x3} and edge set {e1,e2,e3,e4} such that h(e1) = h(e2) =
h(e3) = x1, h(e4) = x2, t(e1) = t(e2) = x2 and t(e3) = t(e4) = x3. Choose an arbitrary vertex v of G1.
Define G2 = Replace(G1,v,H,x1,x2).

For a positive integer n, define Pn to be the digraph with vertex set {x1, . . . ,xn+1} and having two
edge from xi to xi+1 for all 1 ≤ i ≤ n. Choose a vertex u of G2 such that d+G2

(u) = d−G2
(u) = 2. Define

G3 = Replace(G2,u,Pm,x1,xn+1), where m is the least positive integer such that m+ |VG2 | is a prime. It
is routine to check

• G3 has a Hamitonian path if and only G has a Hamitonian path;

• there exist vertices x and y such that d−G3
(x) = 1 and d−G3

(y) = 3;

• for each z ∈V \{x,y}, d−G3
(z) = 2;

• for each z ∈V , d+G3
(z) = 2;

Define G4 to be the digraph which is obtained from G3 by adding k− 2 edge from v to x for every
vertex v of G3. Observe that G4 has a Hamitonian cycle if and only if G3 has a Hamitonian path. Note
that G4 fulfills all properties in Lemma 8. Hence, we polynomially transform the SAT problem to the
problem of determining the existance of completely reachable coloring for a digraph.

4 Digraphs satisfying all road colorings are completely reachable

Let A RC be the family of digraphs consisting the digraphs whose road colorings are all completely
reachable.

Use ⊕ to stand for addition modulo n. Let S be a subset of (Zn,⊕). Let G(S,n) be the digraph with
the vertex set Zn and the edge set {(i, i+1) : i ∈ Zn}∪{(n−1,s) : s ∈ S}.
Theorem 10. Let G be a digraph with n vertices. The digraph G is in A RC if and only if there exists
S⊆ Zn such that 〈S,⊕〉= (Zn,⊕) and G is isomorphic to G(S,n).

Lemma 11. Let G be a digraph with n vertices. If G = (V,E,h, t) ∈ A RC , then there exists a unique
vertex v such that N+

G(v)> 1. Moreover, G contains a hamitonian cycle.

Proof. By Theorem 2, G is strongly connected. Then every vertex has at least one out-neighbour. As-
sume, for contradiction, that there exists two distinct vertices u and v such that N+

G(v)> 1 and N+
G(u)> 1.

Let H = (V1,V2,EH) be the bipartite graph corresponding to G which is define in the proof of Theo-
rem 2. By Theorem 2, H has a V1-perfect matching M. Write M(v) for the vertex such that (v,M(v))∈M.
For every edge e = (x1,x2) ∈ EH \M, we can find an edge (y1,y2) /∈M and y1 6= x1 and let

Me = M∪{(x1,x2),(y1,y2)}\{(x1,M(x1)),(y1,M(y1))}.

Let M = {M}∪{Me : e ∈ EH \M}.
For every e ∈ E, write e for the edge (h(e), t(e)) ∈ EH . Define α : E→M as the function such that

α(e) = {N ∈M : e ∈ N}.

It is clear that α is a road coloring of G. Let A = A (G,α). Note that the action of M is a bijection
and for all e ∈ EH , the defect of the action of Me is 2. Observe that every (n− 1)-element subset is not
reachable in A which is a contradiction.
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Since G is strongly connected has a unique vertex of out-degree ≥ 1, the digraph G has a hamitonian
cycle.

Proof of Theorem 10. “⇐”: It is trivial.
“⇒”: By Lemma 11, we have G is isomorphic to G(S,n) for some subset S⊆ Zn. Let K = 〈S,⊕〉. It

is clear that the period of G equals n
|K| . By Theorem 10, K = (Zn,⊕).
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