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Abstract

In the study of graph indexed random walks, two conjectures on the
average range of some functions on graphs and bipartite graphs are
posed by Loebl-Nešetřil-Reed and by Benjamini-Häggström-Mossel,
respectively. We verify these two conjectures for trees and present
observations relevant to the original conjectures.
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1 Introduction

Let V be a set. The swapping map sV on V × V is the one which sends
(u, v) ∈ V × V to (v, u). It is natural to think of (u, v) ∈ V × V as the
element v − u in the linear space spanned by V and so the swapping map is
essentially the multiplication with −1.

A graph G consists of a vertex set V(G), a side set S(G) together with
a fixed-point free map sG on S(G) such that s2

G is the identity map, and a
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boundary map ∂G which is an injective map from S(G) to (V(G) × V(G)) \
{(v, v) : v ∈ V(G)} satisfying

∂G sG = sV(G) ∂G.

If ∂G(s) = (a, b) = b− a, we often simply denote the side s by
−→
ab. The edge

set E(G) of G is the set of orbits of sG. Indeed, if e ∈ E(G) corresponds to

a pair of sides
−→
ab and

−→
ba, we view a and b as the endpoints of the edge and

denote it by ∂G(e) = {a, b} ∈
(

V(G)
2

)
. When only one graph is concerned, it is

convenient to represent an edge e with ∂G(e) = {a, b} by ab. You may think
of the two sides corresponding to one edge as the two directions running
between its two endpoints. Unless stated otherwise, V(G), and hence S(G)
and E(G), is always assumed to be a finite set. An endomorphism of G is
a map σ from V(G) to itself such that σ(a)σ(b) ∈ E(G) for all ab ∈ E(G).
We write End(G) for the set of all endomorphisms of G. A bijective map on
V(G) is an automorphism of the graph G if it falls into End(G).

The order of a graph G is the size of its vertex set V(G). Let Gn denote
the set of all order-n connected graphs and let Tn denote the set of all order-
n trees. We write Kn, Sn, Pn for the complete graph, the star tree and the
path, respectively, of order n.

Let R be the set of real numbers. The set of real 0-chains on a graph G,
denoted by C0(G;R), is the real linear space consisting of all real functions
on V(G). The set of real 1-chains on a graph G, denoted by C1(G;R), is the
set of those assignments f of real values to the sides of G such that

f(
−→
ab) = f(b− a) = −f(a− b) = −f(

−→
ba)

for every ab ∈ E(G). The coboundary operator on G, denoted by dG, is the
linear operator from C0(G;R) to C1(G;R) such that

dG(F )(
−→
ab) := F (∂G(

−→
ab)) = F (b)− F (a)

for every F ∈ C0(G;R) and ab ∈ E(G). The image of the coboundary
operator dG is the cut space of G. The elements of the cut space are also
often called potential difference functions on E(G). For any two vertices a
and b in the same connected component of G and any f ∈ C1(G;R), let∫ G
a→b f = f(−→ax1) + f(−−→x1x2) + · · · + f(−−−→xt−1xt) + f(

−→
xtb), where x1, . . . , xt are

chosen such that ax1, x1x2, . . . , xt−1xt, xtb are edges of G. It is easy to see
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that the value of
∫ G
a→b f is independent with the choice of the path connecting

a and b, as ∫ G

a→b
f = F (b)− F (a)

provided f = dG(F ).
For every connected graph G and every f ∈ C1(G;R), we define the range

of f to be

rG(f) := max
a,b∈V(G)

∫ G

a→b
f.

Choose a map I from
(

V(G)
2

)
to 2R. We write C1

I(G;R) for the set of those
potential differences f on G such that∫ G

a→b
f ∈ I(ab)

for all {a, b} ∈
(

V(G)
2

)
. If C1

I(G;R) is a finite set, let us define the average
range of C1

I(G;R) to be ∑
f∈C1

I(G;R) rG(f)

|C1
I(G;R)|

,

which is a parameter of some interest in the study of the graph-indexed
Markov chains. Note that the value of I(ab) for ab ∈ E(G) may correspond
to some continuous assumption, say when modelling some random surfaces
in statistical physics, while those I(ab) for ab /∈ E(G) may be thought of as
some long-range constraint or boundary condition [1, 2, 7, 11]. For example,
grounded Lipschitz functions on a tree [10] are associated with the constraint
that I(ab) = {0} for all pairs of leaves {a, b} of the tree.

The bulk of this article is concerned with C1
IG(G;R), where IG is given

by

IG(ab) =

{
{−1, 0, 1}, if ab ∈ E(G),
R, else.

(1)

We call the elements of C1
IG(G;R) Lipschitz cuts on G and call the average

range for C1
IG(G;R) the height of G. We use L (G) for the set of Lipschitz

cuts on G and write h(G) for the height of G. For every G ∈ Gn, the size of
L (G) is at most 3n−1 and this bound is attained if and only if the graph G
is a tree. For any a, b ∈ V(G) and any nonnegative integer r, we use hra,b(G)

to denote the average range of those Lipschitz cuts f ∈ C1(G;R) such that∫ G
a→b f ∈ {r,−r}.
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A Lipschitz function on a connected graph G is any element F ∈ C0(G;R)
such that d(F ) is a Lipschitz cut. In other words, F ∈ C0(G;R) is Lipschitz
if and only if, for all a, b ∈ V(G), F (a) − F (b) takes an integer value not
bigger than the distance between a and b in G. The range of the Lipschitz
function F is

maxF −minF,

which coincides with the range of d(F ) ∈ C1(G;R). Loebl, Nešetřil and Reed
[9] initiated the study of the average range of all Lipschitz functions on a
connected graph. It is easy to see that Kn is the unique one from Gn with
minimum height. In the other direction, we have the following conjecture
posed by Loebl, Nešetřil and Reed.

Conjecture 1.1. [9, Conjecture 1] For every positive integer n and every
G ∈ Gn, h(G) ≤ h(Pn) holds.

Intuitively but not precisely, one may expect more self-intersections in a
random walk on a graph with less cutpoints and cutedges and larger diameter
and so Conjecture 1.1 looks quite reasonable. In the following table, we
display the heights of some paths of small order. Seems that the exact
formula for the height of an n-path is unknown.

n 2 3 4 5 6 7 8 9

h(Pn) 2
3

10
9

40
27

146
81

508
243

1716
729

5682
2187

18546
6561

n 10 11 12 13 14 15 16

h(Pn) 59884
19683

191744
59049

609838
177147

1928956
531441

6073598
1594323

19049962
4782969

59553720
14348907

Let G be a connected graph. Let us define a map ÎG on
(

V(G)
2

)
by putting

ÎG(ab) =

{
{−1, 1}, if ab ∈ E(G),
R, else,

and refer to C1
ÎG

(G;R) by L̂ (G). The set of integers can be thought of as an
infinite path where every two consecutive integers are adjacent. With this
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understanding, L̂ (G) is nothing but the coboundaries of those homomor-

phisms from G to the infinite path [1, 9]. Note that L̂ (G) is nonempty if
and only if G is bipartite. For a connected bipartite graph G, let us denote

by ĥ(G) the average range of L̂ (G), namely

ĥ(G) :=

∑
f∈L̂ (G)

rG(f)

| L̂ (G)|
.

Regarding this parameter, Benjamini, Häggström and Mossel made the fol-
lowing conjecture, which is a main motivation for Loebl, Nešetřil and Reed
to propose their Conjecture 1.1.

Conjecture 1.2. [1, Conjecture 2.2] Let n be a positive number and let G

be a connected bipartite graph of order n. Then, ĥ(G) ≤ ĥ(Pn).

It is clear that almost all questions on h(G) have their counterparts for

ĥ(G). It will be interesting if for some natural questions these two parameters
turn out to have different behaviours. We will prove Conjecture 1.1 and
Conjecture 1.2 for trees in this paper; see Corollary 2.6 and Corollary 2.12.
Note that our proofs for these two results are almost the same and so we do
not bother to give full details for the latter one. Actually, in many places
of this paper, we will only discuss the parameter h(G), leaving aside the

corresponding discussions on ĥ(G).
Csikvári and Lin showed that among all order-n trees, the star tree Sn

has the largest number of endomorphisms and the path Pn has the smallest
number of endomorphisms [6, Theorem 1.8]. For any f ∈ C1(G;R) and any

σ ∈ End(G), let σ∗(f) be the element from C1(G;R) such that σ∗(f)(
−→
ab) =

f
(−−−−−→
σ(a)σ(b)

)
for all ab ∈ E(G). We now set

r∗G(f) :=

∑
σ∈End(G) rG

(
σ∗(f)

)
|End(G)|

,

and define h∗(G) to be the average value of r∗G(f) for all Lipschitz cuts f on
G. Parallel to Conjecture 1.1, one may ask if the path Pn is a graph which
maximizes h∗(G) for G ∈ Gn.

The height function problem introduced above has another natural gener-
alization. For every connected graph G and x, y ∈ V(G), we use DistG(x, y)
to denote the distance between x and y in G. Fix an integer k ≥ 2 and let
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Γk denote the infinite k-regular tree. Take a connected graph G, a vertex
v ∈ V(G) and a vertex u ∈ V(Γk). Define C(G,Γk; v, u) to be the class of
maps f from V(G) to V(Γk) such that

• f(v) = u; and

• DistG(v1, v2) ≥ DistΓk
(f(v1), f(v2)) for all v1, v2 ∈ V(G).

Define the k-height of G, denoted by h(k)(G), to be∑
f∈C(G,Γk;v,u)(| Im(f)| − 1)

|C(G,Γk; v, u)|
,

where Im(f) means the image of the map f. It is not hard to see that h(k)(G)
is irrespective of the choice of v and u and coincides with h(G) when k = 2.
Is Pn the graph with maximum k-height among all graphs from Gn?

In §2, we introduce our approach for tackling Conjecture 1.1 and Con-
jecture 1.2, present our main results (Theorem 2.5 and Theorem 2.11) and
offer pertinent examples which signal our effort towards understanding sev-
eral closely related objects. We prove Theorem 2.5 and Theorem 2.11 in §3
and §4, respectively.

2 Graph transformation and average range

To tackle Conjecture 1.1, a natural approach is to search for some suitable
partial orders < on Gn for which G1 < G2 implies h(G1) < h(G2). If Pn is the
unique maximal element for one such partial order when restricted to some
set C ⊆ Gn, we can verify Conjecture 1.1 for G ∈ C.

Kelmans [8] introduced several operations on graphs which increase some
useful graph parameter. As a variant of Kelmans’s operations, Csikvári [5]
proposed an operation on trees, which he called generalized tree shift. This
operation has been thus called KC-transformation [3, 6] in honor of Kelmans
and Csikvári. For the purpose of getting our Corollary 2.6 that verifies
Conjecture 1.1 for all trees, we basically just need to use the partial order on
trees generated by KC-transformations. For the possibility of extending our
approach here, let us describe below a graph operation which is more general
than KC-transformation.

Take a connected graph G and pick {a, b} ∈
(

V(G)
2

)
. Let Va;b(G) denote

the set of those vertices which cannot reach b without passing by a in G.
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Note that a ∈ Va;b(G). Also note that |Va;b(G)| > 1 if and only if a is a cut
vertex of G. On the condition that min(|Vb;a(G)|, |Va;b(G)|) > 1, the shifting
operation for the pair (a, b), denoted Oa→b, can be applied on G to get a new
graph with one fewer cut vertex, namely Oa→b(G), as follows: Remove the
edges bb1, . . . , bbt, where b1, . . . , bt are all neighbors of b in Vb;a(G), and add
the new edges ab1, . . . , abt. For technical convenience, let us think of G and
Oa→b(G) as two graphs sharing the same vertex set and the same side set
such that, for every s ∈ S(G) = S(Oa→b(G)),

∂Oa→b(G)(s) =


(a, c), if ∂G(s) = (b, c) and c ∈ Vb;a(G),
(c, a), if ∂G(s) = (c, b) and c ∈ Vb;a(G),
∂G(s), else.

(2)

If we can obtain G′ from G by a sequence of shifting operations, we say that
G′ is less then G and write it as G′ ≺ G. It is apparent that (Gn,≺) is a poset
for every positive integer n. For any graph G, E(G) can be partitioned into
blocks where two different edges are in the same block if and only if they fall
into a common simple cycle of G. The following easy observation hints at a
reason why the shifting operation may be convenient to analyze.

Observation 2.1. The two graphs G and Oa→b(G), which share the same
edge set, indeed have the same block partition and so they possess the same
set of Lipschitz cuts. Namely, L (G) and L (Oa→b(G)) are the same subset
of C1(G;R) = C1(Oa→b(G);R).

a

b

c

d

e

f

g

h

i

j

G

Figure 1: h(G) = 17382
7497
≈ 2.31853.

Example 2.2. We do shifting operations on the graph G in Figure 1 to get
two new graphs as demonstrated in Figure 2. As indicated in the figures, the
height decreases after the shifting operations.
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a

b

c

d

e
g

h
i

j f

G′ = Oa→f (G)

f

b

c

d

e
g

h
i j

a

G′′ = Of→a(G)

Figure 2: h(G′) = 16548
7497
≈ 2.20728, h(G′′) = 16072

7497
≈ 2.14379.

a b

a b
a

b

e1 e2

e3

T :

Oa→b(T ):

Ob→a(T ):

Figure 3: h(T ) = 18220040
4782969

≈ 3.80936, h(Oa→b(T )) = 17773592
4782969

≈ 3.71602,
h(Ob→a(T )) = 18230214

4782969
≈ 3.81148.
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Example 2.3. In Figure 3, we demonstrate the fact that the shifting op-
eration may increase the height. This also means that a tree with less cut
vertices may have bigger height. Observe that h(Oa→b(T )) + h(Ob→a(T )) <
2 h(T ). Let Tn be the graph obtained from the tree T in Figure 3 by sub-
dividing the edges e1, e2 and e3 into paths of length n. We mention that
h(Oa→b(Tn)) + h(Ob→a(Tn)) > 2 h(Tn) when n is large enough.

Remark 2.4. Let T be a tree with two cutpoints a and b. We do not know
if it always happens min{h(Oa→b(T )), h(Ob→a(T ))} ≤ h(T ).

Let G be a connected graph and take two different cut vertices a and b
of G. We write V(G; a, b) for the set(

V(G) \ (Va;b(G) ∪ Vb;a(G))
)
∪ {a, b}.

We have not been able to produce a theorem to explain what we saw in
Example 2.2 and Example 2.3. Nevertheless, we can get the following result
which is in the same spirit as these two examples. Notice that under the
assumption of Theorem 2.5, Oa→b(G) and Ob→a(G) are isomorphic to each
other.

Theorem 2.5. Let G be a connected graph and take two different cut vertices
a and b of G. Let H be the subgraph of G induced by V(G; a, b). Assume
that H has an automorphism σ such that σ(a) = b and σ(b) = a. Then
h(G) > h(Oa→b(G)).

Let T be a tree of order n ≥ 4. Assume that T is not the star tree Sn and
hence has at least two cut vertices. Pick two cut vertices a and b of T such
that V(T ; a, b) induces a path P in the tree T . It is obvious that P has a and
b as its endpoints and has an automorphism which swaps a and b. Applying
Theorem 2.5 now yields h(T ) > h(Oa→b(T )). The operation Oa→b used in
this situation is just the original generalized tree shift invented by Csikvári
[5]. An illustration of this so-called KC-transformation is demonstrated in
Figure 4. Note that E(T ) = E(Oa→b(T )) is the disjoint union of E1, E2 and
E(P ), where E1 is the set of edges of T whose endpoints lie in Va;b(T ) and
E2 is the set of edges of T whose endpoints lie in Vb;a(T ).

The above analysis already indicates that the star tree of order n is the
unique minimum element in the poset (Tn,�). Csikvári further noticed that
the path Pn is the unique maximum element in the poset (Tn,�) [5, Theorem
2.4]. Therefore, we derive from Theorem 2.5 the next result, implying that
Conjecture 1.1 is valid for all trees.
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a bE1 E2

Va;b(T ) Vb;a(T )P

a

b

P

E1 E2

T Oa→b(T )

Figure 4: From T to Oa→b(T ) via a KC-transformation.

Corollary 2.6. Let n be a positive integer and take G ∈ Tn. Then,

• h(Sn) ≤ h(G), where equality holds if and only if G = Sn;

• h(G) ≤ h(Pn), where equality holds if and only if G = Pn. �

For a connected graph which is not complete, should we expect that its
height will decrease after adding new edges? If that is the case, surely Con-
jecture 1.1 will follow from Corollary 2.6. Unfortunately, the next example
says that this is not always true.

a2

b4

b1

b3

b2

c4

c1

c3

c2

a1

G
a2

b4

b1

b3

b2

c4

c1

c3

c2

a1

G′

Figure 5: Adding an edge may increase the height.

Example 2.7. Consider the graphs G and G′ depicted in Figure 5, where G′

is obtained from G by adding the edge a1a2. Computer calculations show that
h0
a1,a2

(G) = 16802
6561

≈ 2.56089 > h1
a1,a2

(G) = 1319
648
≈ 2.03549 > h2

a1,a2
(G) = 2.

Note that h(G′) is a weighted average of h0
a1,a2

(G) and h1
a1,a2

(G) while h(G) is
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a weighted average of h(G′) and h2
a1,a2

(G). We thus know that h(G) < h(G′).
Indeed, it holds h(G) = 22402

9315
≈ 2.40494 < 2.41211 ≈ 22078

9153
= h(G′).

Example 2.8. Let n and m be two positive integers. Take the complete
bipartite graph K2,m with the vertex partite sets {a1, a2} and {b1, . . . , bm}.
Add m new vertices c1, . . . , cm and m new edges b1c1, . . . , bmcm to get a graph
Gm. The graph G in Example 2.7 (Figure 5) is simply G4. We now do
subdivision on Gm by replacing every edge by a path of length n to yield the
graph Gm;n and let G′m;n be the graph obtained from Gm;n by adding the edge

a1a2. Some simple arguments tell us that limm→∞ h0
a1,a2

(Gm;n) = 4n > 2n =

h2n
a1,a2

(Gm;n).

c

de

f

g h

b a

Figure 6: A tree T with h2
b,d(T ) > h(T ) > h0

b,d(T ) > h1
b,d(T ).

Example 2.9. For the tree T in Figure 6, it holds h(T ) = 4540
2187
≈ 2.0759.

Moreover, h0
b,d(T ) = 1460

729
≈ 2.00274, h1

b,d(T ) = 973
486
≈ 2.00206 and h2

b,d(T ) =
7
3
≈ 2.33333.

The above examples do not provide us any easy patterns which may direct
us from Corollary 2.6 to a proof of Conjecture 1.1. Let us give a final example
to suggest the possibility that every connected graph has smaller height than
any of its spanning trees. Surely, if this is really true, Conjecture 1.1 follows.

Example 2.10. Up to isomorphism, the graph G′ on the right of Figure 5
has in total five spanning trees, which are displayed in Figure 7. All these
trees have heights bigger than the height of G′: h(T1) = 51656

19683
≈ 2.6244,

h(T4) = 52954
19683

≈ 2.69034, h(T2) = 54412
19683

≈ 2.76442, h(T3) = 55276
19683

≈ 2.80831,
h(T5) = 55774

19683
≈ 2.83361.

The following result is a small step towards tackling Conjecture 1.2.

11



T1 T2 T3

T4 T5

Figure 7: Five spanning trees of the graph G′ in Example 2.7.

Theorem 2.11. Let G be a connected bipartite graph and take two different
cut vertices a and b of G. Let H be the subgraph of G induced by V(G; a, b).
Assume that H has an automorphism σ such that σ(a) = b and σ(b) = a.

Then ĥ(G) > ĥ(Oa→b(G)).

The argument for getting Corollary 2.6 from Theorem 2.5 can be em-
ployed to deduce the following corollary from Theorem 2.11.

Corollary 2.12. Let n be a positive integer and take G ∈ Tn. Then,

• ĥ(Sn) ≤ ĥ(G), where equality holds if and only if G = Sn;

• ĥ(G) ≤ ĥ(Pn), where equality holds if and only if G = Pn. �

3 Proof of Theorem 2.5

This section is devoted to a proof of Theorem 2.5. We have defined H to be
the subgraph of G induced by V(G; a, b). Let us also define Ha and Hb to be
the subgraphs of G induced by Va;b(G) and Vb;a(G), respectively. We thus
get a partition of S(G) into three parts, S(H), S(Ha) and S(Hb).

We will write T(G) for Oa→b(G). We know that S(G) = S(T(G)) and
that ∂T(G) and ∂G are related by Eq. (2). Also recall from Observation 2.1
that L (G) and L (T(G)) are equal.
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We construct a map φ from C1(H;R) to itself such that

φ(f)(
−→
cd) := −f

(−−−−−→
σ(c)σ(d)

)
= f

(−−−−−→
σ(d)σ(c)

)
for all f ∈ C1(H;R) and

−→
cd ∈ S(H). For every f ∈ C1(G;R), let ∆f represent

rG(f)− rT(G)(f) and let Φ(f) be the element of C1(G;R) given by(
Φ(f)|S(H),Φ(f)|S(G)\S(H)

)
:=
(
φ(f |S(H)),−f |S(G)\S(H)

)
. (3)

It is clear that Φ induces a bijection from L (G) to itself and hence

2
(

h(G)− h(T(G)
)

=
∑

f∈L (G)

(
∆f + ∆Φ(f)

)
.

Accordingly, to prove Theorem 2.5, it suffices to show that

∆f + ∆Φ(f) ≥ 0 (4)

for all f ∈ L (G) and that there exists f ∈ L (G) such that (4) holds with
strict inequality.

For f ∈ L (G), A ∈ {H,Ha, Hb} and v ∈ V(G), we define{
M→v

A (f) := maxx∈V(A)

∫ G
x→v f ;

M v→
A (f) := maxx∈V(A)

∫ G
v→x f.

(5)

The shorthand notation in Eq. (5) will be of frequent use later as we have

rG(f) = max
x,y∈V(G)

∫ G

x→y
f

= max
x,y∈V(G)

(

∫ G

x→a
f +

∫ G

a→y
f) (6)

= max
x∈V(G)

∫ G

x→a
f + max

y∈V(G)

∫ G

a→y
f

and {
maxx∈V(G)

∫ G
x→v f = max{M→v

Ha
(f),M→v

H (f),M→v
Hb

(f)},
maxx∈V(G)

∫ G
v→x f = max{M v→

Ha
(f),M v→

H (f),M v→
Hb

(f)}.
(7)
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Let

Σ1 := max{M→a
Ha

(f),M→a
H (f),M→b

Hb
(f)−

∫ G
a→b f};

Π1 := max{Ma→
Ha

(f),M b→
H (f),M b→

Hb
(f)−

∫ G
a→b f};

Σ2 := max{M→a
Ha

(f),M→a
H (f) +

∫ G
a→b f,M

→b
Hb

(f) +
∫ G
a→b f};

Π2 := max{Ma→
Ha

(f),M b→
H (f) +

∫ G
a→b f,M

b→
Hb

(f) +
∫ G
a→b f};

Σ′1 := max{M→a
Ha

(f),M→a
H (f),M→b

Hb
(f)};

Π′1 := max{Ma→
Ha

(f),M b→
H (f),M b→

Hb
(f)};

Σ′2 := max{M→a
Ha

(f),M→a
H (f) +

∫ G
a→b f,M

→b
Hb

(f)};
Π′2 := max{Ma→

Ha
(f),M b→

H (f) +
∫ G
a→b f,M

b→
Hb

(f)}.

(8)

In view of Eqs. (6), (7) as well as the definition of Φ and T(G), we
can write down the following formulae for rG(f), rT(G)(f), rG(Φ(f)) and
rT(G)(Φ(f)).

rG(f) = max
x∈V(G)

∫ G

x→a
f + max

y∈V(G)

∫ G

a→y
f

= max{M→a
Ha

(f),M→a
H (f),M→a

Hb
(f)}

+ max{Ma→
Ha

(f),Ma→
H (f),Ma→

Hb
(f)} (9)

= Σ1 + Π2.

rT(G)(f) = max
x∈V(G)

∫ T(G)

x→a
f + max

y∈V(G)

∫ T(G)

a→y
f

= max{M→a
Ha

(f),M→a
H (f),M→b

Hb
(f)} (10)

+ max{Ma→
Ha

(f),Ma→
H (f),M b→

Hb
(f)}

= Σ′1 + Π′2.

rG(Φ(f)) = max
x∈V(G)

∫ G

x→a
Φ(f) + max

y∈V(G)

∫ G

a→y
Φ(f)

= max{Ma→
Ha

(f),M b→
H (f),M b→

Hb
(f) +

∫ G

b→a
f} (11)

+ max{M→a
Ha

(f),M→b
H (f),M→b

Hb
(f) +

∫ G

a→b
f}

= Π1 + Σ2.
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rT(G)(Φ(f)) = max
x∈V(G)

∫ T(G)

x→a
Φ(f) + max

y∈V(G)

∫ T(G)

a→y
Φ(f)

= max{Ma→
Ha

(f),M b→
H (f),M b→

Hb
(f)} (12)

+ max{M→a
Ha

(f),M→b
H (f),M→b

Hb
(f)}

= Π′1 + Σ′2.

Putting together Eqs. (9), (10), (11), (12) leads to

∆f + ∆Φ(f)

=
(

rG(f)− rT(G)(f))
)

+
(

rG(Φ(f)− rT(G)(Φ(f))
)

(13)

=
(
(Σ1 + Σ2)− (Σ′1 + Σ′2)

)
+
(
(Π1 + Π2)− (Π′1 + Π′2)

)
.

For any x ∈ V(H), the eccentricity of x in the graph H is

max
y∈V(H)

DistH(x, y) = max
y∈V(H)

DistG(x, y)

and will be designated by εH(x).

Lemma 3.1. We can take f ∈ L (G) so that (4) holds as a strict inequality.

Proof. Recall that S(G) is the disjoint union of S(H), S(Ha) and S(Hb). De-
fine the function f on S(G) by setting

f(−→xy) :=


DistG(a, y)−DistG(a, x), if −→xy ∈ S(H);
DistG(a, x)−DistG(a, y), if −→xy ∈ S(Hb), b ∈ {x, y};
DistG(a, x)−DistG(a, y), if −→xy ∈ S(Ha), a ∈ {x, y};
0, else.

It is easy to see that f ∈ L (G), as it holds f = dG(F ), where F ∈ C0(G;R)
is given by

F (x) :=


DistG(a, x), if x ∈ V(G; a, b);
−1, if x ∈ Va;b(G) \ {a};
DistG(a, b)− 1, if x ∈ Vb;a(G) \ {b}.

Moreover, 
(M→a

Ha
(f),Ma→

Ha
(f)) = (1, 0),

(M→a
H (f),M b→

H (f)) =
(
0, εH(a)−DistH(a, b)

)
,

(M→b
Hb

(f),M b→
Hb

(f)) = (1, 0),
(14)
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and hence

Σ1 = max{1, 0, 1−DistH(a, b)} = 1;
Σ2 = max{1,DistH(a, b), 1 + DistH(a, b)} = 1 + DistH(a, b);
Σ′1 = max{1, 0, 1} = 1;
Σ′2 = max{1,DistH(a, b), 1} = DistH(a, b);
Π1 = max{0, εH(a)−DistH(a, b),−DistH(a, b)} = εH(a)−DistH(a, b);
Π2 = max{0, εH(a),DistH(a, b)} = εH(a);
Π′1 = max{0, εH(a)−DistH(a, b), 0} = εH(a)−DistH(a, b);
Π′2 = max{0, εH(a), 0} = εH(a).

This combined with Eq. (13) implies ∆f + ∆Φ(f) = 1 > 0, as was to be
shown.

After establishing Lemma 3.1, our only task is to prove (4) for all f ∈
L (G). In light of Eq. (13), we need to find a way to handle those terms
in (8). It seems appropriate now to introduce some notation in max-plus
algebra [4]. For any two reals x and y, let us write x⊕ y for max{x, y} and
write x⊗ y for x+ y. For the multiplication ⊗ here, the multiplicative unit
is 0. Hence, for any real x, the number −x will usually be written as x⊗−1,
as this makes xx⊗−1 equal to the multiplicative unit 0.

Lemma 3.2. The inequality

max{α, β, γ−δ}+max{α, β+δ, γ+δ} ≥ max{α, β, γ}+max{α, β+δ, γ} (15)

holds for all real numbers α, β, γ, δ.

Proof. We first note that

α⊗ γ⊗(δ⊕ δ⊗−1)− α⊗ γ = (α⊗ γ)⊗(δ⊕ δ⊗−1)⊗(α⊗ γ)⊗−1

= δ⊕ δ⊗−1 (16)

≥ 0.

Next, denote the left-hand side and the right-hand side of (15) by L
and R, respectively. Using some simple properties of the pair of operations
(⊕,⊗), we find that

L =
(
α⊕ β⊕(γ⊗ δ⊗−1)

)
⊗
(
α⊕(β⊗ δ)⊕(γ⊗ δ)

)
= (α⊗α)⊕(β⊗α)⊕(γ⊗ δ⊗−1⊗α)⊕(α⊗ β⊗ δ)⊕(β⊗ β⊗ δ)
⊕(γ⊗ β)⊕(α⊗ γ⊗ δ)⊕(β⊗ γ⊗ δ)⊕(γ⊗ γ)
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and that

R =
(
α⊕ β⊕ γ

)
⊗
(
α⊕(β⊗ δ)⊕ γ

)
= (α⊗α)⊕(β⊗α)⊕(γ⊗α)⊕(α⊗ β⊗ δ)⊕(β⊗ β⊗ δ)⊕(γ⊗ β⊗ δ)
⊕(α⊗ γ)⊕(β⊗ γ)⊕(γ⊗ γ).

By pairing off identical terms from the above expressions of L and R, it
follows from (16) that L ≥ R, as wanted.

Taking

(α, β, γ, δ) :=
(
M→a

Ha
(f),M→a

H (f),M→b
Hb

(f),

∫ G

a→b
f
)

in Lemma 3.2 gives
Σ1 + Σ2 ≥ Σ′1 + Σ′2;

while taking

(α, β, γ, δ) :=
(
Ma→

Ha
(f),M b→

H (f),M b→
Hb

(f),

∫ G

a→b
f
)

in Lemma 3.2 yields
Π1 + Π2 ≥ Π′1 + Π′2.

By now, (4) is direct from Eq. (13). This completes the proof of Theorem
2.5.

4 Proof of Theorem 2.11

In §3, we studied the average range of C1
IG(G;R) for the constraint IG listed

in Eq. (1). But, checking the proof given in §3 shows that the analysis there
can be applied for much more general constraints I. In particular, let us fix
G to be a connected bipartite graph and present below a proof of Theorem
2.11.

Firstly, we check that L̂ (G) = L̂ (T(G)) while the map Φ defined in Eq.

(3) gives rise to a bijection from L̂ (G) to itself. It follows that

2(ĥ(G)− ĥ(T(G)) =
∑

f∈L̂ (G)

(∆f + ∆Φ(f)).
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As before, it then suffices to prove the inequality ∆f + ∆Φ(f) ≥ 0 for all

f ∈ L̂ (G) and to justify the existence of f ∈ L̂ (G) satisfying

∆f + ∆Φ(f) > 0. (17)

Replacing everywhere f ∈ L (G) by f ∈ L̂ (G), we can set up the inequality
in exactly the same way as we prove (4) for f ∈ L (G). To show the existence

of f ∈ L̂ (G) for which (17) holds, we need to establish a result for L̂ (G)
parallel to Lemma 3.1. Note that the proof for Lemma 3.1 does not directly

work for the case of L̂ (G). But, adjusting a little bit of the argument there
still allows us to enunciate the following lemma, which concludes the proof
of Theorem 2.11.

Lemma 4.1. Let G be a connected bipartite graph. Then we can always find

f ∈ L̂ (G) to fulfil (17).

Proof. Take F ∈ C0(G;R) so that

F (x) =


DistG(a, x), if x ∈ V(G; a, b);
−1, if x ∈ Va;b(G) and DistG(x, a) is odd;
0, if x ∈ Va;b(G) and DistG(x, a) is even;
DistG(a, b)− 1, if x ∈ Vb;a(G) and DistG(x, b) is odd;
DistG(a, b), if x ∈ Vb;a(G) and DistG(x, b) is even.

Setting f := dG(F ), we can see that f falls into L̂ (G). In addition, we check
that Eq. (14) still holds for this f and so the same computation process as
in Lemma 3.1 shows that ∆f + ∆Φ(f) = 1 > 0.
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