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Abstract. Let V be a countable set, let T be a rooted tree on the
vertex set V , and let M = (V, 2V , µ) be a finite signed measure space.
How can we describe the “shape” of the weighted rooted tree (T,M)?
Is there a natural criterion for calling it “fat” or “tall”? We provide a
series of such criteria  and show that every “heavy” weighted rooted
tree is either fat or tall, as we wish. This leads us to seek hypergraphs
such that regardless of how we assign a finite signed measure on their
vertex sets, the resulting weighted hypergraphs have either a “heavy”
large matching or a “heavy” vertex subset that induces a subhypergraph
with small matching number. Here we also must develop an appropriate
definition of what it means for a set to be heavy in a signed measure
space.
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1 Background

Roughly speaking, Heisenberg’s uncertainty principle for position and momen-
tum says that, for a good function on the real line, either its variance is large or
the variance of its Fourier transform is large [15, Theorem 4.1]. This kind of weak
duality or orthogonality [7] also happens in combinatorics. The most famous ex-
ample may be the Erdös-Szekeres subsequence theorem [6], which says that each
sequence of rs+ 1 real terms contains an increasing subsequence of r + 1 terms
or a decreasing subsequence of s+ 1 terms or both. Though the Erdös-Szekeres
subsequence theorem has a short self-contained proof, it also easily follows from
either Dilworth’s Theorem [3] or Mirsky’s Theorem [11]. The two equalities re-
sults, Dilworth’s Theorem and Mirsky’s Theorem, are generalized from posets
to digraphs as two inequalities results, the Gallai–Milgram theorem [9] and the
Gallai-Roy Theorem [8,12]. As a consequence of the Gallai–Milgram theorem
or the Gallai-Roy Theorem, we know that λ(D)α(D) ≥ |V(D)| for any finite
digraph D, where we use V(D), λ(D) and α(D) for the vertex set of D, the
length of a longest path in D and the maximum size of an independent set in
D. This means that, we either have a ‘long’ path or a ‘large’ independent set in
D, provided we define ‘long’ and ‘large’ in an appropriate way. Note that λ(D)
measures the length of a path by giving each vertex of the path a weight 1 while
⋆ Supported by NSFC (11671258, 11971305) and STCSM (17690740800).
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α(D) measures the size of a stable set by giving each vertex in the stable set a
weight 1. Are there similar orthogonality results in which we assign weight to a
set by something other than the usual cardinality function? For Dilworth’s The-
orem, a weighted version is recently discovered by Hujdurović, Husić, Milanič,
Rizzi and Tomescu [10, Theorem 3.3]. Recall that a poset is just a transitive
acyclic digraph and a rooted tree poset is a poset in which there is a special root
vertex and a unique saturated path from the root vertex to any other vertex.
Among the very few such weighted results which we are aware of, another one
is a result of Song, Ward and York [14, Theorem 1.2], which improves a result
of Bonamy, Bousquet and Thomassé [2, Lemma 3]: for any weighted rooted tree
poset, either there is a long path or there are two heavy vertex subsets A and
B for which there are no arcs between A and B. In some sense, this conforms
to the above-mentioned result about the orthogonality of independent sets and
paths: we are now considering vertex subsets which are pairwise idependent of
each other, instead of merely considering a set of pairwise nonadjacent vertices.
We will present a vast generalization of the result of Song et al. (see Corollary 1)
and discuss the possibility of going further along this line. Note that our proof
strategy is totally different with the approach of Song et al.

2 Fat or tall?

A graph G consists of a pair (V(G),E(G)) where E(G) ⊆
(
V(G)

2

)
. We call V(G)

and E(G) the vertex set and edge set of G, respectively. A graph G is countable if
V(G) is a countable set and is finite if V(G) is finite. Recall that each countable
set is either finite or denumerable (infinite). Let V be a countable set and let
M = (V, 2V , µ) be a finite signed measure space, that is,

∑
v∈V |µ(v)| < ∞ and

µ(A) =
∑

a∈A µ(a) holds for all A ⊆ V . If G is a graph with V(G) = V , the
graph G together with the finite signed measure space M gives us a weighted
graph, in which we think of µ as the weighting function. If r ∈ V = V(G),
we call the triple G = (G, r, µ) a weighted rooted graph, where r is the root of
G and µ, as known to be the weighting function of (G,µ), is also referred to as
the weighting function of G. In the case that G is a tree, (G,µ) is called a
weighted tree and (G, r, µ) is called a weighted rooted tree.

For any integer k, we use [k] for the set of positive integers between 1 and
k. For any two vertices u and v of a tree T , the set of vertices on the unique
path connecting u and v in T is denoted by T [u, v]. A down-set of a rooted
tree (T, r) is a subset A of V(T ) such that, for each a ∈ A, the set A contains all
components of T −a to which r does not belong. A chain in a rooted tree (T, r)
is a subset A of V(T ) such that T [u, r] and T [v, r] are comparable elements in
the Boolean lattice 2V(T ) for every u, v ∈ A. A down-set of a rooted tree is a
union of geodesic rays to the ends of the tree; A chain in a rooted tree is a subset
of one geodesic ray.

Given a weighted rooted tree, when would you call it a “tall” tree and when
would you call it a “fat” tree? If you think of being tall and being fat as two
interesting properties, when do you expect to see an interesting weighted rooted
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tree? We suggest the following definitions so that you will not encounter any
boring tree.

Definition 1. Let T = (T, r, µ) be a weighted rooted tree and let d1, . . . , dk, c be
k + 1 reals. We call T (d1, . . . , dk)-fat provided we can find k disjoint down-sets
D1, . . . , Dk of (T, r) such that µ(Di) ≥ di for i ∈ [k]. We call T c-tall provided
we can find a chain C in (T, r) such that µ(C) ≥ c.

The next result says that as long as your weighted rooted tree is heavy
enough, it is inevitable for it to be either fat or tall. It illustrates the spirit of
Ramsey theory: You always find interesting structures when you are entering
a large but otherwise arbitrary space. Note that Theorem 1 just recalls [14,
Theorem 1.2] when µ is a probability measure, k = 2 and d1 = d2 = c = 1

3 .

Theorem 1. Let T = (T, r, µ) be a weighted rooted tree and let k be a positive
integer. If d1, . . . , dk, c are k + 1 positive reals such that

µ(V(T )) ≥
k∑

i=1

di + (k − 1)c, (1)

then T is either (d1, . . . , dk)-fat or c-tall or both.

Let k be a positive integer and let d1, . . . , dk, c be k + 1 positive reals. If
d1, . . . , dk take at least two different values, we are not aware of any general way
of constructing a weighted rooted tree T = (T, r, µ) with

µ(V(T )) <

k∑
i=1

di + (k − 1)c,

which is neither (d1, . . . , dk)-fat nor c-tall. However, if we assume that d1, . . . , dk
take a constant value, we can give one such construction below, demonstrating
the tightness of (1) in Theorem 1.

Example 1. Let k be a positive integer and let d1, . . . , dk, c and δ be k+2 positive
reals. Let K =

∑k
i=1 di and assume that K + (k − 1)c ≥ δ.

· · ·

0 r

ϵ
x1

ϵ
x2

ϵ
xm

Fig. 1. A weighted rooted tree with weights indicated on the left of each node.
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Case 1. k = 1.
Take a positive integer m such that mc > K − δ and let ϵ = K−δ

m . The
weighted rooted tree T = (T, r, µ) as shown in Fig. 1 satisfies

µ(V(T )) = mϵ = K − δ = K + (k − 1)c− δ

and is neither (d1, . . . , dk)-fat nor c-tall.

· · ·

· · · · · · · · ·· · ·

0 r

ϵ x1 ϵ x2 ϵ xℓ

ξ

x1
1

ξ

x1
2

ξ
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m

Fig. 2. A weighted rooted tree.

Case 2. k = ℓ+ 1 ≥ 2.
Pick a positive integer m such that (m + 1)δ > 2K. Let ϵ = c − δ

2ℓ and
ξ = 2K−δ

2mℓ . We now consider the weighted rooted tree T = (T, r, µ) as displayed
in Fig. 2. Note that

µ(V(T )) = ℓ(mξ + ϵ) = (K − δ

2
) + (ℓc− δ

2
) = K + (k − 1)c− δ.

Firstly, every chain C in (T, r) satisfies µ(C) ≤ ϵ + ξ = c − δ
2ℓ +

2K−δ
2mℓ < c,

showing that T is not c-tall.
Secondly, we assume that D1, . . . Dk are k disjoint down-sets of (T, r). Under

the additional condition that di takes a constant value d for each i ∈ [k], let us
show that dj = d > µ(Dj) holds for at least one j ∈ [k], which says that T is
not (d1, . . . , dk)-fat.

For i ∈ [ℓ], we denote the set {xi
j : j ∈ [m]} by Li. Note that, for all

i ∈ [ℓ], a down-set of (T, r) containing xi must also contain Li. By the pigeonhole
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principle, without loss of generality, we assume that ∪j∈[t]Dj ⊆ ∪i∈[t−1]Li holds
for some integer t satisfying 2 ≤ t ≤ k. This gives

dt

m(t− 1)
≥ d(ℓ+ 1)

mℓ
=

dk

mℓ
>

2dk − δ

2mℓ

=
2K − δ

2mℓ
= ξ =

µ(∪i∈[t−1]Li)

m(t− 1)
≥

∑
j∈[t] µ(Dj)

m(t− 1)
,

yielding that, for at least one j ∈ [t], it happens dj = d > µ(Dj), as desired. ⊓⊔

In Theorem 1, we can surely allow any one of d1, . . . , dk, c to be zero. This
does not make any real difference, as the empty set, which is both a chain and
a down-set, has measure zero. But Theorem 1 may not hold if we allow any of
d1, . . . , dk, c to take a negative value. This can be seen from the following easy
example.

Example 2. Let V = {r}, let T be the unique tree on V and let µ be the
measure on V such that µ(r) = 0. Let c = d1 = 1 and d2 = −2. Note that
µ(V(T )) = 0 ≥ 0 = (d1 + d2) + (2 − 1)c. For (T, r, µ), surely the µ-measure of
each chain is less than c = 1 and the µ-measure of each down-set is less than
d1 = 1.

Question 1. A function µ on 2V is submodular provided µ(A∪B)+µ(A∩B) ≤
µ(A) + µ(B). In Theorem 1, what will happen if µ is not a measure but only a
submodular function? 1

A hypergraph H is a pair (V(H),E(H)), where V(H) is the vertex set
of H and E(H) ⊆ 2V(H) is known as the edge set of H. To emphasize that
we are considering a hypergraph, we often call each edge of the hypergraph H
an hyperedge of H. For each positive integer k, a k-matching of H is a set
of k disjoint hyperedges of H, while a k-antimatching of H is a subset C of
V(H) which is disjoint from at least one member of any (k+ 1)-matching of H.
Note that a k-antimatching is just a set which cannot be a transversal of any
(k + 1)-matching.

Let V be a countable set and let (V, 2V , µ) be a finite signed measure space.
Let H be a hypergraph with V(H) = V and E(H) ⊆ 2V . For real numbers
d1, . . . , dk, we say that (H,µ) is (d1, . . . , dk)-fat provided we can find a k-
matching of H, say {e1, . . . , ek}, such that µ(ei) ≥ di for i ∈ [k]. For any real
number c and positive integer t, we say that (H,µ) is (c, t)-tall provided we can
find a t-antimatching W of H such that µ(W ) ≥ c. These concepts allow us to
formulate the next conjecture, which coincides with Theorem 1 when t = 1.

Conjecture 1. Let T = (T, r, µ) be a weighted rooted tree and let k, t be two
positive integers. Let H be the hypergraph with V(H) = V(T ) and with the set
1 We have been able to answer this question in positive after submitting this conference

version. We will report the relevant work in the journal version of this paper.
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of all down-sets of (T, r) as E(H). If d1, . . . , dk, c are k + 1 positive reals such
that

µ(V(T )) ≥
k∑

i=1

di + ⌈k − 1

t
⌉c,

then (H,µ) is either (d1, . . . , dk)-fat or (c, t)-tall or both.

Let (X,µ) be a Borel measure space, namely X is a topological space and
µ a Borel measure on the Borel sets of X. For the rooted tree case, we are
indeed considering the topological space on its vertex set with all down-sets as
open sets. In general, you can consider an Alexandroff space, which is essentially
the same as a poset antimatroid 2, and a corresponding Borel measure space.
Can we go further to talk about the hypergraph consisting of all open sets of
X and conclude under certain assumption that it is fat or tall or both as in
Conjecture 1?

Let P be a poset of countablely many elements. For any x ∈ P , we write x ↓P
for the set of elements which are less than or equal to x in P and we write x ↑P
for the set of elements which are greater than or equal to x in P . A down-set of
P is a subset A of P such that x ↓P⊆ A for all x ∈ P , and an up-set of P is the
complement set of a down-set of P . When the poset is finite, sending a down-
set to its set of maximal elements yields a one-to-one correspondence between
down-sets and antichains of the poset. If (P, 2P , µ) is a finite signed measure
space, we call (P, µ) a weighted poset. Each rooted tree (T, r) naturally gives
rise to a poset (V(T ),≺), called its ancestral poset, in which x ≺ y if and only
if y ∈ T [x, r]\{x}. One natural question is to ask to what extent Theorem 1 can
be extended to general weighted posets. A filter in a poset (Q,≺) is a nonempty
subset F such that

– if x ∈ F and x ≺ y, then y ∈ F ;
– if x, y ∈ F , then there exists z ∈ F with z ≺ x and z ≺ y.

Note that each filter in the ancestral poset of a rooted tree has to be a path.
The next example tells us that we cannot always expect to see either a heavy
antimatching/filter or a heavy matching in a general weighted poset.

Example 3. Take two positive integers k and n. Let V1 = [k]×[n] and V0 = [n][k].
You can think of V0 as the set of all vertices (atoms) of the n-ary k-dimensional
cube and think of V1 as the set of all facets (coatoms) of the n-ary k-dimensional
cube. Let P be the poset on V0 ∪V1 in which x > y if and only if x = (ℓ, h) ∈ V1

and y ∈ V0 is a function satisfying y(ℓ) = h. Let H be the hypergraph consisting
of all downsets of P . Choose any nonnegative real δ. We define a signed measure
µ on P such that

µ(x) =

{
1−nkδ

nk if x ∈ V1;
δ if x ∈ V0.

2 More precisely, an Alexandroff space is the set of down-sets of a preorder.
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A subset of V0 ∪ V1 is a 1-antimatching of H if and only if it is a filter in P
if and only if it is of the form x ↑P for some x ∈ P . But for any x ∈ P , it holds
µ(x ↑P ) ≤ δ + 1−nkδ

n = 1
n + δ(1− nk−1) ≤ 1

n .
Let {Q1, Q2} be a 2-matching in H. If one of them is contained in V0, then

min(µ(Q1), µ(Q2)) ≤ µ(V0) = nkδ. If both Q1 and Q2 are not contained in V0,
then there exists ℓ ∈ [k] such that Q1 ∪ Q2 ⊆ V0 ∪ ({ℓ} × [n]). This means
that µ(Q1 ∪ Q2) ≤ n 1−nkδ

nk + nkδ = 1
k + (k−1)nkδ

k and so min(µ(Q1), µ(Q2)) ≤
1
2k + (k−1)nkδ

2k . To summarize, when δ is small enough, say δ = 0, we have
min(µ(Q1), µ(Q2)) ≤ 1

k . ⊓⊔

One reason that we like to study trees is that they are really visible so that
we may easily say many simple facts on them and then there are many directions
to go for possible generalizations. For a rooted tree and a measure on its vertex
set, we can add a new root vertex and join it to the old root vertex and then
naturally produce a measure on the edge set of the new graph from the existing
measure on the old tree. This operation allows us view the claim in Theorem 1 as
a statement on an undirected branching greedoid [1,13]. We think that we should
be quite close to a proof of the following conjecture. Besides branching greedoid
addressed in Conjecture 2, one may even consider possible generalizations to
multiply-rooted graphs [4].

Conjecture 2. Let F be an undirected branching greedoid on a countable ground
set E. Let H be the hypergraph on E whose edge set is {E − X : X ∈ F}.
Let µ be a measure on the power set of E and let k be a positive integer. If
d1, . . . , dk, c are k + 1 positive reals such that

µ(E) ≥
k∑

i=1

di + (k − 1)c,

then (H,µ) is either (d1, . . . , dk)-fat or c-tall or both.

We mention that Theorem 1 is self-strengthening. The next two easy corol-
laries of Theorem 1 both have it as a special case.

Corollary 1. Let (P, µ) be a weighted poset and r ∈ P . Assume that, for each
y ∈ r ↓P , the number of saturated chains from r to y, denoted by ny, is a
finite number. For any k+1 nonnegative reals c, d1, . . . , dk satisfying (k− 1)c+∑k

i=1 dk ≤ µ(r ↓P ), either there exists a saturated chain C of r ↓P starting from
its maximum element r such that

∑
u∈C

µ(u)
nu

≥ c, or there exist pairwise disjoint
down-sets D1, . . . , Dk of r ↓P such that

∑
u∈Di

µ(u)
nu

≥ di for all i ∈ [k].

Corollary 2. Let V be a countable set and let (V, 2V , µ) be a finite signed
measure space. Let W be a subset of V and let T be a tree on V . Let d1, . . . , dk, c
be k + 1 positive reals for which (1) holds. Then there are either k disjoint
subsets D1, . . . , Dk such that µ(Di) ≥ di and T −Di is a tree containing W for
all i ∈ [k], or there is a vertex u such that µ(C) ≥ c where C is the the convex
hull of {u} ∪W in T .
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Erdős and Hajnal [5] conjectured that for every graph H, there exists a
constant cH such that every graph G on n vertices which does not contain an
induced copy of H has a clique or a stable set of size ncH . Since clique and stable
set of a graph correspond to chain and antichain in a poset, this conjecture is
also in the spirit of Dilworth’s Theorem which we discuss in Section 1. The work
of Song et al. [14, Theorem 1.2] is to verify a conjecture posed by Bonamy et
al. in their study of the Erdös-Hajnal Conjecture [2]. We finally present a result,
Theorem 2, as an application of Theorem 1. Note that the proof can be done by
following the proof of [2, Theorem 6] with our Theorem 1 playing the role of [2,
Lemma 3] there.

Let G be a graph. For any X ⊆ V(G), the neighborhood of X in G, denoted
by NG(X), is the set of vertices from V(G) \ X which are adjacent to at least
one element of X in G, and the closed neighborhood of X in G, denoted by
NG(X), is defined to be NG(X) ∪X.

Theorem 2. Let k be a positive integer and let (G,µ) be a connected countable
weighted graph. If d1, . . . , dk, c are k + 1 positive integers such that

µ(V(G)) ≥
k∑

i=1

di + (k − 1)c,

then either there exists a subset A of V(G) such that G[A] is a path and
µ(NG(A)) ≥ c, or there are k disjoint subsets X1, . . . , Xk of V(G) such that
µ(Xi) ≥ di for all i ∈ [k] and that there are no edges between Xi and Xj for all
{i, j} ∈

(
[k]
2

)
.

3 Up and down in a rooted tree

The purpose of this section is to prove Theorem 1.
For each poset P and each subset D of P , we write D ↑P for the minimum

up-set of P which contains D and we write D ↓P for the minimum down-set of
P which contains D. Let T = (T, r) be a rooted tree. We will naturally regard
T as a poset in which x > y if and only if x ∈ T [y, r] \ {y}. For any x ∈ V(T ),
let ST (x) be the set of neighbors y of x in T such that x ∈ T [y, r], which we call
the shadow of x in T . Surely, it holds x ↓T ⊇ ST (x) for all x ∈ V(T ).

Definition 2. Let (P, µ) be a weighted poset. For any two nonnegative real
numbers α and β, we say that a down-set D of P is an (α, β) down-set of (P, µ)
provided µ(D) ≥ β and µ(D ↑P ) ≤ α+ β.

An (α, β) down-set D is like a good watermelon, where D really stands for
the pulp of the watermelon and D ↑P represents its closure, namely the pulp
together with the peel.

Let us explore the condition under which we can find an (α, β) down-set in
a weighted rooted tree. We first do this for finite trees in Lemma 1. Then we
strengthen Lemma 1 to Lemma 3, which makes the same statement for countable
trees.



Weighted rooted trees: Fat or tall? 9

Lemma 1. Let T = (T, r) be a finite rooted tree and let µ be a weighting
function on T . Let α and β be two nonnegative reals such that µ(V(T )) ≥ α+ β
and µ(x ↑T ) ≤ α for all x ∈ V(T ). Then the weighted rooted tree T = (T , µ) has
an (α, β) down-set.

Proof. We intend to find a down-set D of T such that µ(D) ≥ β and µ(D ↑T ) ≤
α+ β. We will demonstrate its existence by induction on |V(T )|.

If |V(T )| = 1, then β = 0 and we can set D = {r}.
Assume now |V(T )| > 1 and that the result holds when |V(T )| is smaller.

List the elements in ST (r) as x1, . . . , xs. Let Vi := xi ↓T for i ∈ [s] and put
ϵ := α− µ(r) ≥ 0. There are three cases to consider.

Case 1. β ≤ µ(V1) ≤ β + ϵ.
Take D = V1, which is a down-set of T . Then µ(D) = µ(V1) ≥ β and

µ(D ↑T ) = µ(V1) + µ(r) ≤ (β + ϵ) + (α− ϵ) = α+ β.

Case 2. β + ϵ < µ(V1).
Define a signed measure space (V1, 2

V1 , µ′) by requiring

µ′(A) =

{
µ(A) + µ(r) if x1 ∈ A ⊆ V1,
µ(A) if A ⊆ V1 \ {x1}.

Let T ′ be the subtree of T induced by V1. Note that

µ′(V(T ′)) = µ′(V1) = µ(V1) + µ(r) > (β + ϵ) + (α− ϵ) = α+ β. (2)

By induction hypothesis for (T ′, x1, µ
′), we have a down-set D of (T ′, x1) such

that
µ′(D) ≥ β and µ′(D ↑T ′,x1) ≤ α+ β. (3)

Comparing (3) with (2) yields D ↑T ′,x1
⊊ V1 = x1 ↓T,x and so x1 /∈ D follows.

We now see that D = D ↓T,r satisfies µ(D) = µ′(D) ≥ β and µ(D ↑T,r) =
µ′(D ↑T ′,x1) ≤ α+ β.

Case 3. µ(V1) < β.
Let T ′ be the tree obtained from T by deleting V1 and let µ′ be the restriction

of µ on 2V(T )\V1 . Let α′ = α and β′ = β − µ(V1) > 0. Note that µ′(V(T ′)) =
µ(V(T ))−µ(V1) ≥ α′+β′. Applying induction assumption on (T ′, r, µ′), we can
find a down-set D′ of (T ′, r) such that µ(D′) ≥ β′ = β−µ(V1) and µ(D′ ↑T ′,r) ≤
α′ + β′ = α + β − µ(V1). We thus see that D = D′ ∪ V1 is a down-set of T , as
required. ⊓⊔

Lemma 2. Let T = (T, r) be a countable rooted tree and let µ be a weighting
function on T . Take x ∈ V(T ) and any positive real ϵ. Then ST (x) can be
partitioned into two sets A and B such that |B| < ∞ and |µ(A ↓T )| < ϵ.

Proof. If ST (x) is a finite set, we can choose A = ∅ and B = ST (x). Otherwise, we
can enumerate the elements of ST (x) as x1, x2, . . .. Note that

∑∞
i=1 |µ(xi ↓T )| <

∞ and so there exists a positive integer N such that
∑∞

i=N |µ(xi ↓T )| < ϵ. Now,
let A = {xi : i ≥ N} and B = {xi : i ∈ [N − 1]}. ⊓⊔
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Lemma 3. Let T = (T, r) be a countable rooted tree. Let α and β be two
nonnegative real numbers. Consider a weighted rooted tree T = (T , µ) satisfying
µ(V(T )) ≥ α + β while µ(x ↑T ) ≤ α for all x ∈ V(T ). Then T has an (α, β)
down-set.

Proof. If µ(V(T )) = α+ β, clearly D = V(T ) itself is an (α, β) down-set of T.
In the sequel, we turn to the case that µ(V(T )) > α + β. Take any ϵ such

that 0 < ϵ ≤ µ(V(T ))−α− β. We claim that we can find an (α+ ϵ, β) down-set
Dϵ of T. If this really holds, a compactness argument tells us that there exists
an (α, β) downset D of T, as wanted.

For any nonnegative integer i, let Li be the set of vertices of T which are of
distance i from r in T . By assumption,∑

x∈V(T )

|µ(x)| < ∞.

Consequently, there exists a nonnegative integer N such that
∞∑

i=N

∑
x∈Li

|µ(x)| < ϵ. (4)

By Lemma 2, we can associate to each x ∈ V(T ) a partition of ST (x) into
two sets Ax and Bx such that |Bx| is finite and |µ(Ax ↓T ))| < ϵ. In view of (4),
we will require that Bx = ∅ for x ∈ LN−1. For all x ∈ V(T ), we denote the set
Ax ↓T by Λx. Let A be the set system

{Λx : x ∈ ∪N−1
i=0 Li}.

Observe that A forms a hierarchy, namely A ∩A′ ∈ {∅, A,A′} for all A,A′ ∈ A.
Let A be the set of maximal elements of A, namely

A = {A ∈ A : ∄A′ ∈ A, A′ ⊋ A}
= {A ∈ A : A′ ∩A ∈ {A′, ∅},∀A′ ∈ A}.

It is clear that the elements of A are pairwise disjoint and we write Σ for the
union of them. Let

W = (∪N−1
i=0 Li) \Σ

and let T ∗ be the subtree of T induced by W . For each element Λx ∈ A, we add
a new vertex λx and connect it to x ∈ W and thus obtain from (T ∗, r) a new
rooted tree (T ◦, r).

For i = 0, . . . , N−1, let Wi = W ∩Li. Of course, W0 = {r} is a finite set. For
each integer ℓ satisfying 0 ≤ ℓ ≤ N − 2, we have Wℓ+1 = ∪x∈Wℓ

Bx and so the
finiteness of Wℓ+1 is guaranteed by the finiteness of Wℓ. We can thus conclude
now that W is a finite set, and henceforth (T ◦, r) is a finite rooted tree.

We let µ◦ be the weighting of T ◦ such that{
µ◦(x) = µ(x) if x ∈ W ,
µ◦(λx) = µ(Λx) if Λx ∈ A.
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We can see that µ◦(V(T ◦)) = µ(V(T )) ≥ α+β+ϵ and that µ◦(x ↑T ◦) ≤ α+ϵ for
all x ∈ V(T ◦). Applying Lemma 1 yields the claim that we can find an (α+ ϵ, β)
down-set D◦ of (T ◦, µ◦). Finally, letting D be the subset of D◦ consisting of all
elements of the form λx, the required (α+ ϵ, β) down-set Dϵ of T can be chosen
to be

Dϵ := (D◦ \ D) ∪ (
∪

λx∈D

Λx).

This is the end of the proof. ⊓⊔

Proof (Proof of Theorem 1). We prove the statement by an induction on k. Let
T = (T, r).

When k = 1, we can simply choose D1 to be the down-set V(T ). Since
µ(D1) ≥ d1, we see that (T, r, µ) is d1-fat, and so the base case holds true.

Assume now k > 1 and the result holds for smaller k. Let us suppose that
(T, r, µ) is not c-tall and try to find k disjoint down-sets D1, . . . , Dk of T such
that µ(Di) ≥ di for all i ∈ [k].

Taking α = c and β = dk, it follows from Lemma 3 that there exists a down-
set D of T such that µ(D) ≥ β = dk and µ(D ↑T ) ≤ α + β = c + dk. Consider
the finite measure space (V(T ), 2V(T ), µ′) where

µ′(x) :=

{
0 if x ∈ D ↑T ;
µ(x) if x ∈ V(T ) \ (D ↑T ).

Note that (k − 2)c +
∑k−1

i=1 di ≤ µ′(V(T ). By induction hypothesis, there exist
k − 1 down-sets of T , say D′

1, . . . , D
′
k−1, such that µ′(D′

i) ≥ di holds for all
i ∈ [k − 1]. For i ∈ [k], define

Di :=

{
D′

i \ (D ↑T ) if i ∈ [k − 1];
D if i = k.

Clearly, D1, . . . , Dk are pairwise disjoint sets with µ(Di) ≥ di for all i ∈ [k].
To verify that D1, . . . , Dk are what we need, it is sufficient to show that Di is a
down-set of T for every i ∈ [k−1]. Pick i ∈ [k−1] and x ∈ Di ↓T ⊆ D′

i. Then there
exists x′ ∈ Di such that x′ ∈ T [x, r]. Since Di = D′

i \D ↑T , we have x′ /∈ D ↑T
and therefore x /∈ D ↑T . Consequently, we arrive at x ∈ D′

i \ (D ↑T ) = Di,
finishing the proof. ⊓⊔

We have been playing up and down in a tree to deduce our main result. It
is interesting to see for which structure more general than trees we can play up
and down analogously. We conclude the paper by giving a couterexample for the
“poset version” of Lemma 1.
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0 r

1
4
− ϵ x1

1
4
− ϵ x2

1
4
− ϵ x3

1
4
− ϵ x4

ϵ

y1

ϵ

y2

ϵ

y3

Fig. 3. Hasse diagram of a poset in which x covers y when x is depicted higher than y
and xy is drawn as an edge. See Example 4.

Example 4. Let ϵ be a positive real such that ϵ < 1
12 , let α = 3

4 and let β be a
number inside the open interval (ϵ, 1

4 − 2ϵ). For the weighted poset depicted in
Fig. 3, µ(P ) = 1 − ϵ > α + β and µ(x ↑T ) ≤ 3

4 − 2ϵ ≤ α for all x ∈ V(T ). But
there is no (α, β) down-set in P . ⊓⊔
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