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Abstract. For an m-tuple of nonnegative n×n matrices (A1, . . . , Am), primitivity/Hurwitz4
primitivity means the existence of a positive product/Hurwitz product respectively (all products are5
with repetitions permitted). The Hurwitz product with a Parikh vector α = (α1, . . . , αm) ∈ Zm

≥0 is6

the sum of all products with αi multipliers Ai, i = 1, . . . ,m. Ergodicity/Hurwitz ergodicity means7
the existence of the corresponding product with a positive row.8

We give a unified proof for the Protasov-Vonyov characterization (2012) of primitive tuples of ma-9
trices without zero rows and columns and for the Protasov characterization (2013) of Hurwitz primi-10
tive tuples of matrices without zero rows. By establishing a connection with synchronizing automata,11
we, under the aforementioned conditions, find an O(n2m)-time algorithm to decide primitivity and12
an O(n3m2)-time algorithm to construct a Hurwitz primitive vector α of weight

∑m
i=1 αi = O(n3).13

We also report results on ergodic and Hurwitz ergodic matrix tuples.14

Key words. automaton, Černý function, ergodic exponent, Hamiltonian walk, primitive expo-15
nent, stable relation.16
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1. Primitivity and Hurwitz primitivity. Let R≥0 denote the set of nonneg-18

ative real numbers and let Matn(R≥0) be the set of n by n nonnegative real matrices.19

Various dynamical behaviors for homogeneous, inhomogeneous and high dimensional20

Markov chains lead to the study of various nonnegative matrix classes and their Bool-21

ean counterparts [25, 47, 49]. A matrix A ∈ Matn(R≥0) is primitive if some positive22

power of A is a positive matrix; a matrix A ∈ Matn(R≥0) is ergodic if some pos-23

itive power of A has a positive column. A finite Markov chain (resp., irreducible24

Markov chain) has a unique stationary distribution if and only if its transition ma-25

trix is ergodic (resp., primitive) [27, 36]. Note that an ergodic matrix is also named26

as column-primitive and a stochastic matrix is ergodic if and only if it is stochas-27

tic indecomposable aperiodic [11, Proposition 1][12, Proposition 1]. For an ergodic28

(resp., primitive) matrix A, it is of interest to estimate the minimum positive integer29

k such that Ak has a positive column (resp., is a positive matrix). There are several30

possibilities to generalize this concept from homogeneous chains to inhomogeneous31

chains, namely from a matrix to a set of matrices. This paper is about two of them,32

primitivity/ergodicity and Hurwitz primitivity/ergodicity. This is part of the study33

of the general reachability problem, for which we refer to [44, 60] for a glimpse of a34

broader scope of research.35

We write Z≥0 for the set of nonnegative integers and write N for the set of positive36

integers. For any real number x, we use [x] to denote the set {i ∈ N : i ≤ x}. Let37
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2 Y. WU AND Y. ZHU

X be a set. A word of length s over X is a sequence of elements from X of length s,38

say α1 · · ·αs where α1, . . . , αs ∈ X. Let α = α1 · · ·αs and β = β1 · · ·βt be two words39

over X. We write αβ for the word α1 · · ·αsβ1 · · ·βt. For each x ∈ X, we denote the40

number of occurrences of x in the word α by |α|x, that is |α|x = |{i ∈ [s] : αi = x}|.41

The Parikh vector of α, dubbed by Ψ(α), is defined as the vector in ZX≥0 such that42

Ψ(α)(x) = |α|x for all x ∈ X [48]. Note that Ψ(α) is known as the content [22, p. 3]43

or type [39, p. 52] of α in the study of Young tableaux, and is called the color vector44

of α by some authors [42, 43]. When X = [m], we often write ZX≥0 as Zm≥0. For any45

τ ∈ Zm≥0, we adopt the notation |τ | for
∑m
i=1 τ(i) and call it the weight of τ .46

Let A = (A1, . . . , Am) be an m-tuple of n×n nonnegative matrices, namely A47

is a map from [m] to Matn(R≥0) that sends i ∈ [m] to Ai. For each word α =48

α1 · · ·αs ∈ [m]s, we denote by Aα the matrix Aα1
· · ·Aαs

and call it a product over49

A of length s. For any τ ∈ Zm≥0, let Aτ denote the matrix
∑

Ψ(α)=τ Aα. We name50

Aτ a Hurwitz product of A of length |τ |. A word α over [m] is a primitive word51

for A provided Aα > 0, and it is an ergodic word for A provided Aα has a positive52

column; a vector τ ∈ Zm≥0 with positive weight is called a Hurwitz primitive vector53

of A if Aτ > 0, and it is called a Hurwitz ergodic vector of A if Aτ has a positive54

column. We call A primitive [45] (resp., ergodic [45], Hurwitz primitive [15], Hurwitz55

ergodic [23]) if it has a primitive word (resp., ergodic word, Hurwitz primitive vector,56

Hurwitz ergodic vector). The primitive exponent and ergodic exponent of A, denoted57

by p(A) and e(A), respectively, are the minimum length of a primitive word and an58

ergodic word of A; the Hurwitz primitive exponent and the Hurwitz ergodic exponent59

of A, denoted by hp(A) and he(A), respectively, are the minimum weight of a Hurwitz60

primitive vector and a Hurwitz ergodic vector of A. We use the convention that the61

exponent is ∞ when the corresponding word/vector does not exist. We will denote62

the largest finite value of p(A), hp(A), e(A), he(A) by p(n,m), hp(n,m), e(n,m),63

he(n,m), respectively, where A runs through all m-tuples of Matn(R≥0).64

The concept of primitivity for nonnegative matrix families has appeared in the65

study of Lyapunov exponents of random matrix products [40], stochastic control,66

refinement equations [56], consensus problems, mathematical ecology, scrambling ma-67

trices and Boolean networks [5, 21]. Hurwitz primitivity for nonnegative matrix fam-68

ilies has background in multivariate Markov chains [15, 16, 17]. Hurwitz ergodicity69

and some related concepts are closely related to synchronizing problems for automata70

[23, 43, 44].71

Given any m-tuple A over Matn(R≥0), one would like to determine if it is primitive72

(resp., Hurwitz primitive, ergodic, Hurwitz ergodic); moreover, one may like to find73

a product (resp., Hurwitz product) of A which is positive or has a positive column.74

These problems are closely related to the problems of bounding the corresponding75

exponents.76

Martyugin finds that it is PSPACE-complete to decide whether a given size-77

two matrix set is ergodic [34, Proposition 2]. This further calls forth the result of78

Gerencsér, Gusev and Jungers that the problem of deciding whether a given set of79

two matrices is primitive is also PSPACE-complete [21, Theorem 6]. As with how80

complex it is to decide Hurwitz primitivity or Hurwitz ergodicity for general matrix81

sets, there seems to be no result at all, to the best of our knowledge.82

For each n ∈ N, let p(n) = maxm∈N p(n,m) and e(n) = maxm∈N e(n,m). Rystsov83

[46, Theorem 2 and Eq. (6)] proves that limn→∞
log e(n)

n = log 3
3 . Gerencsér, Gusev84

and Jungers find that p(n) = Θ(e(n)) [21, Theorem 2], which combined with the85

above result of Rystsov then leads to limn→∞
log p(n)

n = log 3
3 [21, Theorem 3]. For86
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PRIMITIVITY AND HURWITZ PRIMITIVITY OF MATRIX TUPLES 3

each fixed m ∈ N, it is discovered by Olesky, Shader, and Van den Driessche that87

hp(n,m) = Θ(nm+1) [37, Theorem 7]. Take a positive integer n. A classical result88

of Wielandt [59] [60, Corollary 1.4] claims that p(n, 1) = hp(n, 1) = 1 + (n − 1)2.89

Based upon [11, Corollary 1] or [60, Lemma 2.1], it is not hard to check that e(n, 1) =90

he(n, 1) = 1 + (n− 2)(n− 1); see Theorem 3.4.91

2. Nonnegative matrices without zero rows/columns. The set of nonneg-92

ative matrices that has no zero rows is denoted by NZ1 and the set of nonnegative93

matrices that has no zero rows and no zero columns is denoted by NZ2. For every94

positive integer n, we use NZ1(n) and NZ2(n) as a shorthand for Matn(R≥0)∩NZ1 and95

Matn(R≥0) ∩ NZ2, respectively. We shall focus our attention on NZ1 and NZ2 in this96

note. The main reason for this interest comes from the fact that the characterization97

of primitive matrices has nice generalization to primitivity for NZ2 [45] and Hurwitz98

primitivity for NZ1 [42], which we illustrate in subsection 2.1. It worths mentioning99

that NZ1 contains the set of stochastic matrices while NZ2 contains the set of doubly100

stochastic matrices.101

A matrix is an automaton matrix if it is a zero-one matrix each row of which102

contains a unique one. We denote by A the set of all automaton matrices, which is103

an important subclass of NZ1. An automaton of size n is a subset of Matn(R≥0) ∩ A.104

Also note that a family of n×n nonnegative integer matrices is nothing but a nonde-105

terministic automaton, namely an arc-labelled digraph. In the literature, an ergodic106

automaton is also called a synchronizing automaton. Černý function, as introduced107

in subsection 2.2, arises naturally in the study of synchronizing automata and turns108

out to be crucial in our study of various reachability properties for subsets of NZ1 and109

NZ2.110

Let X be a set of nonnegative matrices and let n ∈ N. We denote by pX(n)111

(resp., hpX(n), eX(n), heX(n)) the maximum finite primitive exponent (resp., Hurwitz112

primitive exponent, ergodic exponent, Hurwitz ergodic exponent) of matrix tuples113

consisting of some n×n matrices from X.114

2.1. Characterizations via common invariant partitions. A partition π115

of a nonempty set V is a sequence of nonempty disjoint sets whose union is V ; the116

number of sets in this partition π is called its size and is denoted |π|. We call π117

nontrivial when |π| > 1. We say that a matrix A ∈ Matn(R≥0) acts on a partition118

π = (V1, . . . , Vr) of [n] subordinate to a permutation σ ∈ Symr provided A(Vi, Vj) is a119

zero matrix whenever j ̸= σ(i). If A acts on π subordinate to the identity permutation,120

it can be compared with the deck transformation in the theory of covering spaces [26].121

For simplicity, we may just say that A preserves the partition π when it acts on π122

subordinate to a permutation. If both A and B preserve the partition π, surely so123

does their product. Assume that π is a partition of [n] and A is a set of matrices of124

order n such that A acts on π subordinate to σA for all A ∈ A. If σAσB = σBσA for125

all A,B ∈ A, then clearly every Hurwitz product of elements from A will preserve126

the same partition π. In representation theory, the common invariant subspaces of a127

family of invertible matrices are the fundamental objects; for general linear operators128

we can discuss their common invariant cones [41]. For our purpose now, we will see129

that common invariant partitions will be crucial for understanding the whole picture.130

A matrix A ∈ Matn(R≥0) is irreducible if for every x, y ∈ [n] there exists a131

positive integer s such that As(x, y) > 0. A nonnegative matrix set A is irreducible132

if the matrix
∑
A∈AA is irreducible. The Perron-Frobenius theorem claims that an133

irreducible matrix A ∈ Matn(R≥0) is primitive if there is no nontrivial partition of134

[n] on which A acts subordinate to a cyclic permutation. This result has a nice135
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4 Y. WU AND Y. ZHU

generalization for both primitive matrix sets and Hurwitz primitive matrix sets.136

Theorem 2.1 (Protasov [42, Theorem 1]). Let A ⊆ Matn(R≥0) be an irreducible137

set of matrices belonging to NZ1. Then A is not Hurwitz primitive if and only if we138

can find a nontrivial partition π of [n] and σA ∈ Sym|π| for all A ∈ A such that139

σAσB = σBσA and A acts on π subordinate to σA for all A,B ∈ A.140

Theorem 2.2 (Protasov and Voynov [45, Theorem 1]). Let A ⊆ Matn(R≥0) be141

an irreducible set of matrices belonging to NZ2. Then A is primitive if and only if142

there is no nontrivial partition π of [n] which is preserved by all elements of A.143

The only proof of Theorem 2.1 so far is reported by Protasov [42], which is144

based on some earlier work of Olesky, Shader and Van den Driessche [37, Theorem145

1]. Protasov and Voynov [45] employ geometrical properties of affine operators on146

polyhedra to give the first proof of Theorem 2.2. There are several later proofs by147

different authors, using either combinatorial methods [1, 2, 5] or analytic method [57].148

We will give a unified proof for both Theorem 2.1 and Theorem 2.2 in section 4. It149

is a surprise that this unified simple proof is missing in the previous intense study of150

these characterization results.151

To tackle the road coloring problem, Culik, Karhumäki and Kari [14, 29, 30] in-152

troduce the concept of stability relation for finite automata. It is named as strong153

compatibility by Al’pin and Al’pina [1] for general matrix semigroup. Essentially, this154

is the concept of covering for an arc-labelled digraph [6, 28, 35, 51]. More generally,155

the concept of equitable partition is of fundamental importance in algebraic combina-156

torics, which will also play a key role in our work on strongly synchronizing automata157

[61]. Our unified proof presented in section 4 not only points out that the corner-158

stones for the theory of Hurwitz primitivity and primitivity, Theorems 2.1 and 2.2,159

can be easily understood from the point of view of stability relation, but also hints at160

a possible closer relationship between Hurwitz primitivity and primitivity.161

2.2. Exponents and Černý function. According to Gawrychowski and Straszak162

[20, Theorem 16], there does not exist any constant ϵ > 0 and any polynomial time163

algorithm that computes e(A) for all given synchronizing n-state automaton A within164

a factor of n1−ϵ, unless P=NP. The Černý function c [31, Section 3] [55, Section 3] is165

nothing but eA, that is,166

c(n) = eA(n) = max{e(A) : A ⊆ Matn(R≥0) is an ergodic automaton}167

for all n ∈ N. Note that c(1) = 1.168

The research on synchronizing automata and the Černý function starts in 1960s169

[32][33, Chapter IV]. Černý [7, 8] first observes that (n− 1)2 ≤ c(n) ≤ 2n − n− 1 for170

all n ≥ 2; then he proposes in his talk and in print [9] his famous conjecture.171

Conjecture 2.3 (Černý). It holds for all integers n ≥ 2 that c(n) = (n− 1)2.172

Two authoritative surveys [31, 55] have expounded in details the work around173

Conjecture 2.3. We only mention the following upper bounds of the Černý function.174

Theorem 2.4 (Pin [38, Proposition 3.1], Frankl [18, Theorem], Szyku la [52, The-175

orem 11], Shitov [50, Proposition 7]). For every integer n ≥ 2,176

c(n) ≤ min
{n3 − n

6
,

85059n3 + 90024n2 + 196504n− 10648

511104
,177 (

7

48
+

2 · 15625

1597536

)
n3 + o(n3)

}
= O(n3).178

179
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PRIMITIVITY AND HURWITZ PRIMITIVITY OF MATRIX TUPLES 5

For each n ∈ N, Blondel, Jungers and Olshevsky [5, Theorem 17,Example 1]180

obtain the estimate n2

2 ≤ pNZ2
(n) ≤ 2 c(n) + n− 1 ≤ O(n3). For every integer n ≥ 2,181

Gusev [23, Proposition 5] finds that hp(Cn) ≥ he(Cn) = (n−1)2, where Cn is the Černý182

automaton with n states, an automaton consisting of two n×n matrices. Protasov183

[44, Conjecture 1] conjectures that hpNZ1
(n) is upper bounded by a polynomial of184

n. We affirm this conjecture of Protasov in subsection 5.1 by showing heNZ1
(n) ≤185

2 c(n) = O(n3) (Theorem 5.3) and hpNZ1
(n) ≤ 2 c(n) +O(n2) ≤ O(n3) (Theorem 5.4)186

for all n ∈ N.187

2.3. Algorithms. For any ergodic m-tuple A over NZ1(n), Protasov designs an188

algorithm which finds an ergodic word of A of length O(n3) within time O(n3m) [44,189

Theorem 7,Remark 4]; he also demonstrates an O(n3m)-time algorithm to yield a190

primitive word of a primitive m-tuple over NZ2(n) [44, Theorem 9]. In subsection 5.2,191

we present an algorithm which finds a Hurwitz ergodic vector of weight O(n3) for a192

Hurwitz ergodic m-tuple over NZ1(n) in time O(n3m2) (Theorem 5.5). This solves193

a problem posed by Protasov [44, Problem 4]. We also design an algorithm of time194

complexity O(n3m2) which finds a positive Hurwitz primitive vector of weight O(n3)195

for any Hurwitz primitive m-tuple over NZ1(n) (Theorem 5.6), thus solving another196

problem raised by Protasov [44, Problem 2].197

For any automaton A ⊆ Matn(R≥0) of size m, it is well-known that there exists198

an algorithm to check whether or not A is ergodic in time O(n2m); see [8, Theorem199

2], [31, Section 2] and [33, Theorem 15]. For any m-tuple A over NZ1(n), we find that200

the same idea applies to give an O(n2m)-time algorithm for checking the ergodicity201

of A (Theorem 6.1).202

For any irreducible m-tuple A over NZ1(n), Protasov finds an O(n3m + n2m2)-203

time algorithm to check if A is Hurwitz primitive (resp., Hurwitz ergodic) [42, The-204

orem 2]; if A is an irreducible automaton, Protasov adapts the above algorithm to205

check if it is Hurwitz ergodic by spending in total O(n2m log n + n2m2) arithmetic206

operations [44, Theorem 12].207

Protasov and Voynov [45, Proposition 2] show that Theorem 2.2 leads to an208

algorithm of deciding primitivity for any givenm-tuple A over NZ2(n) in timeO(n3m).209

Another algorithm of deciding primitivity for such a matrix set is stated (without a210

proof) by Gusev, Jungers and Pribavkina in [24, Theorem 3.2] whose time-complexity211

is O(n2m)a(n+m), where a is the inverse Ackerman function. We improve these work212

by presenting a primitivity recognition algorithm for such a matrix set which runs in213

time O(n2m) (Theorem 6.2).214

2.4. Layout of the paper. The remaining of this note will proceed as follows.215

In section 3, adopting the usual approach in combinatorial matrix theory, we216

explain how to deal with various reachability properties of nonnegative matrix tuples217

as combinatorial problems about digraphs. Being a warm up in this setting, we derive218

there e(n, 1) = he(n, 1) = 1 + (n−2)(n−1) (Theorem 3.4) as a graph theory exercise.219

Note that e(n, 1) ≤ 1 + (n − 2)(n − 1) is already reported by Chevalier et al. [11,220

Corollary 1]; but our new deduction of e(n, 1) ≤ 1 + (n− 2)(n− 1) in Theorem 3.4 is221

more direct and only appeals to a plain fact like [60, Lemma 2.1]. It is interesting that222

the function 1 + (n− 2)(n− 1) appears in a quantitative version of the road coloring223

problem [3, Theorems 2 and 7, Conjecture 2].224

In section 4, we present a sketch of a proof of Theorems 2.1 and 2.2 from the225

viewpoint of stable relation.226

We devote sections 5 and 6 to recognition algorithms, finding certifying products,227
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6 Y. WU AND Y. ZHU

and estimating exponents for various reachability properties of matrix sets from NZ1228

and NZ2. We summarize the newest progress on these issues in Tables 1 and 2. On the229

one hand, almost all proofs of our new work, possibly excepting that of Lemma 5.2,230

look to be straightforward modifications of known proofs. On the other hand, we231

do resolve several open problems and improve existing results. In subsection 5.1, we232

establish upper bounds for heNZ1
(n) and hpNZ1

(n), while in subsection 5.2 we present233

algorithms of finding a Hurwitz primitive (Hurwitz ergodic) vector for a given Hurwitz234

primitive (Hurwitz ergodic) set of matrices belonging to NZ1. We finish the paper235

in section 6 by displaying an algorithm for checking the primitivity property of any236

given set of matrices belonging to NZ2.237

Table 1
Some results on primitive and Hurwitz primitive m-tuples over Matn(R≥0).

Primitive Hurwitz Primitive
Assumption NZ2 NZ1

Time complexity
of recognition
algorithm

PSPACE-hard
[21]

O(n2m)
Theorem 6.2

?
O(n3m+ n2m2)

[42]

Time complexity
of finding a product

PSPACE-hard
[21]

O(n3m)
[44]

?
O(n3m2)

Theorem 5.6
Finding such a
shortest product

PSPACE-hard NP-hard ? ?

Upper bounds
of exponents

p(n) ≤ 3
n
3
(1+ϵ)

when n → ∞
[21]

pNZ2
(n) ≤

2 c(n) + n− 1
[5]

hp(n,m) ≤
m!mnm+1 + n2

[37]

hpNZ1
(n) ≤

2 c(n) +O(n2)
Theorem 5.4

Lower bounds
of exponents

p(n) ≥ 3
n
3
(1−ϵ)

when n → ∞
[21]

pNZ2
(n, 2) ≥ n2/2

[5]
hp(n,m) ≥ nm+1

[37]

hpNZ1
(n, 2) ≥

(n− 1)2

[23]

Table 2
Some results on ergodic and Hurwitz ergodic m-tuples over Matn(R≥0).

Ergodic Hurwitz Ergodic
Assumption NZ1 NZ1

Time complexity
of recognition
algorithm

PSPACE-hard
[34]

O(n2m)
Theorem 6.1

?
O(n3m+ n2m2)

[42]

Time complexity
of finding a product

PSPACE-hard
[34]

O(n3m)
[44]

?
O(n3m2)

Theorem 5.5
Finding such a
shortest product

PSPACE-hard NP-hard ? ?

Upper bounds
of exponents

e(n) ≤ 3
n
3
(1+ϵ)

when n → ∞
[46]

eNZ1
(n) ≤ c(n) ?

heNZ1
(n) ≤ 2 c(n)

Theorem 5.3

Lower bounds
of exponents

e(n) ≥ 3
n
3
(1−ϵ)

when n → ∞
[46]

e(n, 1) = n2 − 3n+ 3
Theorem 3.4

eNZ1
(n, 2) ≥ (n− 1)2

[7]

he(n, 2) ≥
(n− 1)2

[23]

heNZ1
(n, 2) ≥

(n− 1)2

[23]

3. Matrix, digraph, and ergodic exponent. Let D = (D1, . . . , Dm) be an238

m-tuple of digraphs on the same vertex set V . Let α be a word over [m] of length s.239

A sequence (v0, . . . , vs) over V is called a walk of length s from v0 to vs labelled by240

α in D if (vi−1, vi) belongs to the arc set of Dαi
for all i ∈ [s]. A nontrivial walk is241

a walk of length at least one. A walk (v0, . . . , vs) is closed if v0 = vs. The notation242
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PRIMITIVITY AND HURWITZ PRIMITIVITY OF MATRIX TUPLES 7

x
α−→
D

y means that there exists a walk from x to y in D labelled by α. Let τ be243

a vector in Zm≥0. The notation x
τ
99
D
K y means that there exists a word β over [m]244

such that x
β−→
D

y and Ψ(β) = τ . For any two sequences (x1, . . . , xs) and (y1, . . . , ys)245

over V , we use (x1, . . . , xs)
α−→
D

(y1, . . . , ys) to denote xi
α−→
D

yi for all i ∈ [s]; we use246

(x1, . . . , xs)
τ
99
D
K (y1, . . . , ys) to denote xi

τ
99
D
K yi for all i ∈ [s]. For any X ⊆ V , we247

say that α synchronizes X to a vertex v ∈ V in D if x
α−→
D

v holds for all x ∈ X; we248

say that τ Hurwitz synchronizes X to a vertex v ∈ V in D if x
τ
99
D
K v holds for all249

x ∈ X.250

Every matrix A ∈ Matn(R≥0) is associated with a digraph D(A) on the vertex251

set [n] in which (x, y) is an arc of D(A) if and only if A(x, y) > 0. For an m-252

tuple A = (A1, . . . , Am) over Matn(R≥0), we write D(A) for the m-tuple of digraphs253 (
D(A1), . . . ,D(Am)

)
, which can be viewed as an arc-labelled digraph on [n]. Let us254

recall the following straightforward but useful fact, which says that matrix multipli-255

cation is nothing but walks in digraphs.256

Lemma 3.1. Let A be an m-tuple over Matn(R≥0) and let α be a word over [m].257

For every x, y ∈ [n], it holds that Aα(x, y) > 0 if and only if x
α−−−→

D(A)
y.258

Lemma 3.1 says that various primitivity/ergodicity properties introduced in sec-259

tion 1 are reachability properties for digraphs. Actually, let A be an m-tuple over260

Matn(R≥0). Then A is primitive if there exists a nonempty word α over [m] such that261

x
α−−−→

D(A)
y for all x, y ∈ [n]; A is Hurwitz primitive if there exists a nonzero vector262

τ ∈ Zm≥0 such that x
τ

9999
D(A)

K y for all x, y ∈ [n]; A is ergodic if there exists a nonempty263

word α over [m] which synchronizes [n] in D(A); A is Hurwitz ergodic if there exists264

a nonzero vector τ ∈ Zm≥0 which Hurwitz synchronizes [n] in D(A); A is irreducible if265

D(A) is strongly connected, that is, there exists a walk of positive length from x to y266

for all vertices x and y of D(A).267

Let D be a tuple of digraphs on a common vertex set V . A Hamiltonian walk [4,268

Section 1.4] in D is a walk in D that visits every vertex in V . We write hamipx(D)269

for the length of the shortest Hamiltonian walks in D starting at x ∈ V and let270

hamip(D) = maxx∈V hamipx(D). We use hamic(D) to denote the length of the shortest271

nontrivial closed Hamiltonian walks in D. It surely holds hamip(D) ≤ hamic(D) − 1.272

Lemma 3.2 (Chang and Tong [10, Theorem 2]). For every strongly connected273

digraph D on n vertices, it holds hamic(D) ≤ ⌊ (n+1)2

4 ⌋.274

Lemma 3.3. Let A be an irreduciblem-tuple over NZ1(n). If A is Hurwitz ergodic,275

then it is Hurwitz primitive. Moreover, hp(A) ≤ he(A) + hamip(D(A)) ≤ he(A) +276

hamic(D(A)) − 1 ≤ he(A) + ⌊ (n−1)(n+3)
4 ⌋.277

Proof. Take τ ∈ Zm≥0 and x ∈ [n] such that |τ | = he(A) and y
τ

9999
D(A)

K x for278

all y ∈ [n]. Since A is irreducible, we can find a word β = β1 · · ·βs over [m] of279

length s ≤ hamip(D(A)) < ∞ such that there exists an integer iz ∈ [s+ 1] satisfying280

x
β1···βiz−1−−−−−−→

D(A)
z for each z ∈ [n]. Note that we can take ix = 1 and so β1 · · ·βix−1 is the281

empty word.282
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Arbitrarily pick w, z ∈ [n]. As A ⊆ NZ1(n), we can find a vertex y ∈ [n] such283

that w
βiz ···βs−−−−−→
D(A)

y, and thus we have284

w
βiz ···βs−−−−−→
D(A)

y
τ

9999
D(A)

K x
β1···βiz−1−−−−−−→

D(A)
z.285

This implies that τ + Ψ(β) is a Hurwitz primitive vector of A. It now follows from286

Lemma 3.2 that hp(A) ≤ |τ + Ψ(β)| = he(A) + s ≤ he(A) + hamip(D(A)) ≤ he(A) +287

hamic(D(A)) − 1 ≤ he(A) + ⌊ (n−1)(n+3)
4 ⌋.288

Theorem 3.4. It holds for each n ∈ N that e(n, 1) = he(n, 1) = 1+(n−2)(n−1).289

Proof. The case of n ≤ 2 is trivial. We thus assume now n ≥ 3.290

Let A be an irreducible n by n ergodic matrix and let D = D(A⊤). Let C be291

a shortest closed walk in D of positive length and let c be its length. There exists292

a vertex x on the cycle C whose out-neighbor in D appear both in C and outside293

of C. We use Xi to denote the set {y : x
i
99
D
K y}. By [60, Lemma 2.1], it holds294

2 ≤ |X1| < |X1+c| < |X1+2c| < · · · < |X1+tc|, where t is the integer such that295

X1+(t−1)c ̸= [n] and X1+tc = [n]. Observe that c ≤ n− 1 and t ≤ n− 2. Henceforth,296

(3.1) e(A) = he(A) ≤ 1 + tc ≤ 1 + (n− 2)(n− 1).297

Let B be an n by n ergodic matrix. Among all strongly connected components of298

D(B), there must be exactly one sink component D′, namely there is no arc in D(B)299

going from D′ to the outside of D′. Let k be the number of vertices in D′ and let A be300

the submatrix of B induced by D′. Then he(B) = e(B) ≤ n− k + e(A). Considering301

that n ≥ 3, we have n + k ≥ 4 and so (n + k)(n − k) ≥ 4(n − k). By (3.1), we now302

obtain he(B) = e(B) ≤ n− k+ 1 + (k− 2)(k− 1) ≤ 1 + (n− 2)(n− 1), which implies303

e(n, 1) = he(n, 1) ≤ 1 + (n− 2)(n− 1).304

The n-th Wielandt matrix Wn is the zero-one matrix of order n such that D(Wn)305

consists of a closed Hamiltonian walk 1 → 2 → · · · → n→ 1 and an extra arc n→ 2.306

By Wielandt’s classical observation [59], hp(Wn) = (n − 1)2 + 1. By Lemma 3.3,307

e(Wn) = he(Wn) ≥ hp(Wn)−hamip(D(Wn)) ≥ (n−1)2+1−(n−1) = 1+(n−2)(n−1).308

This implies that e(n, 1) = he(n, 1) = e(Wn) = he(Wn) = 1 + (n− 2)(n− 1), finishing309

the proof.310

4. Characterizing Hurwitz primitivity and primitivity. Let A be an m-311

tuple over NZ1(n). Two vertices x, y ∈ [n] are called stable for A, denoted x ≈A y, if312

for any word α over [m] and for any subset {u, v} ⊆ [n] satisfying (x, y)
α−−−→

D(A)
(u, v),313

we can find a word β over [m] which synchronizes {u, v} in D(A). Two vertices314

x, y ∈ [n] are called Hurwitz stable for A, denoted x
h
≈A y, if for all vector τ ∈ Zm≥0315

with (x, y)
τ

9999
D(A)

K (u, v), there exists a word τ ′ over [m] which Hurwitz synchronizes316

{u, v} in D(A). A key ingredient for our analysis of stability relation is the concept317

of incompressible set, which is termed an F-clique by Trahtman [54] in the setting of318

synchronizing automata in honor of Friedman [19]. Two vertices y, y′ ∈ [n] are called319

Hurwitz incompressible for A provided there is no vector which Hurwitz synchronizes320

{y, y′} in D(A); similarly, we say that y, y′ ∈ [n] are incompressible for A provided321

there is no word over [m] which synchronizes {y, y′} in D(A). We call X ⊆ [n]322

an incompressible set of A or a Hurwitz incompressible set of A if its elements are323
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pairwise incompressible for A or pairwise Hurwitz incompressible for A, respectively.324

The stability relation, given by the set of stable pairs, is stable under the action of the325

semigroup generated by A: If (x1, y1)
τ

9999
D(A)

K (x2, y2) and x1
h
≈A y1, then x2

h
≈A y2;326

if (x1, y1)
α−−−→

D(A)
(x2, y2) and x1 ≈A y1, then x2 ≈A y2. In some sense, being an327

incompressible set of A is also stable under the action of A: If (x1, . . . , xk)
τ

9999
D(A)

K328

(y1, . . . , yk) and {x1, . . . , xk} is a Hurwitz incompressible set, then so is {y1, . . . , yk};329

if (x1, . . . , xk)
α−−−→

D(A)
(y1, . . . , yk) and {x1, . . . , xk} is an incompressible set, then so is330

{y1, . . . , yk}.331

Our proof of Lemma 4.1 simply follows the proof of [1, Theorem 2] by Al’pin and332

Al’pina.333

Lemma 4.1. Let A be an m-tuple over NZ1(n). If A is irreducible, then the334

following hold.335

(1) The Hurwitz stable relation
h
≈A is an equivalence relation.336

(2) The stable relation ≈A is an equivalence relation.337

Proof. (1) The Hurwitz stable relation is clearly a symmetric binary relation.338

Assume that x1
h
≈A y1 and y1

h
≈A z1 for x1, y1, z1 ∈ [n]. Let D = D(A). Let τ339

be an arbitrary vector in Zm≥0 with (x1, y1, z1)
τ
99
D
K (x2, y2, z2). From x1

h
≈A y1 we340

derive the existence of ϕ ∈ Zm≥0 and u ∈ [n] such that (x2, y2)
ϕ
99
D
K (u, u). Since no341

matrix from A has any zero row, there exists z3 ∈ [n] such that z2
ϕ
99
D
K z3. In light of342

y1
h
≈A z1, there exist ψ ∈ Zm≥0 and v ∈ [n] such that (y1, z1)

τ+ϕ
9999

D
K (u, z3)

ψ
99
D
K (v, v).343

Observe that x1
τ
99
D
K x2

ϕ
99
D
K u

ψ
99
D
K v. We then find that ϕ+ ψ Hurwitz synchronizes344

{x2, z2} in D, and thus x1
h
≈A z1 follows. This proves that the Hurwitz stable relation345

is transitive.346

Finally, we need to prove the reflexivity of
h
≈A. Take y ∈ [n] and τ ∈ Zm≥0. Assume347

that y
α−→
D

u1 and y
α′

−→
D

u′1 for two words α, α′ over [m] with Ψ(α) = Ψ(α′) = τ .348

Let {x1, . . . , xk} ⊆ [n] be a Hurwitz incompressible set of A of largest size. As A is349

irreducible, we can find a word β such that x1
β−→
D

y. Let ϕ = Ψ(βα) = τ+Ψ(β). Since350

A falls into NZ1, we can find u2, . . . , uk so that (x1, . . . , xk)
ϕ
99
D
K (u1, u2, . . . , uk) and351

(x1, . . . , xk)
ϕ
99
D
K (u′1, u2, . . . , uk). Since the k+1 elements u1, u

′
1, u2, . . . , uk cannot be352

pairwise Hurwitz incompressible, the only possibility is that u1 and u′1 can be Hurwitz353

synchronized. This proves y
h
≈A y, as wanted.354

(2) The proof is similar to the proof of (1).355

We recall a basic observation in the study of synchronizing phenomena, which356

indeed goes back to the very beginning of this subject; see [8, Theorem 2] and [33,357

Theorem 15].358

Lemma 4.2. Let A be an m-tuple over NZ1(n) and let D = D(A).359

(1) Assume that for every x, y ∈ [n], there exists a vector τ ∈ Zm≥0 such that τ360
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Hurwitz synchronizes {x, y} in D. Then A has a Hurwitz ergodic vector.361

(2) Assume that for every x, y ∈ [n], there exists a word α over [m] such that α362

synchronizes {x, y} in D. Then A possesses an ergodic word.363

Proof. (1) Every singleton set inside [n] can be trivially Hurwitz synchronized.364

So, to finish the proof, we take a proper subset X of [n] and an element z ∈ [n] \X,365

and aim to show that X ∪ {z} can be synchronized in A under the assumption that366

ϕ ∈ Zm≥0 synchronizes X to y ∈ [n].367

Since A ⊆ NZ1, there exists z′ ∈ [n] such that z
ϕ
99
D
K z′. By our assumption,368

there exists a vector ψ which Hurwitz synchronizes {z′, y}. Then ϕ + ψ Hurwitz369

synchronizes X ∪ {z} in D, as desired.370

(2) The proof is analogous to the proof of (1).371

Lemma 4.3. Let A = (A1, . . . , Am) be an irreducible m-tuple over Matn(R≥0).372

(1) Assume that A1, . . . , Am ∈ NZ1. Then, A is Hurwitz primitive if and only if373

u
h
≈A v for all u, v ∈ [n].374

(2) Assume that A1, . . . , Am ∈ NZ2. Then, A is primitive if and only if u ≈A v375

for all u, v ∈ [n].376

Proof. For both (1) and (2), it is enough to prove the backward direction.377

(1) Assuming that u
h
≈A v for all u, v ∈ [n], Lemma 4.2 then claims that A is378

Hurwitz ergodic. By Lemma 3.3, A is Hurwitz primitive.379

(2) Let B be the m-tuple (A⊤
1 , . . . , A

⊤
m). By Lemma 4.1, the stable relation ≈B380

gives a partition π of [n]. Since A ∈ NZ2, we see that both A and B preserve the381

partition π. Since we have assumed that the stable relation ≈A is [n] × [n], we see382

that |π| = 1 and so ≈A=≈B= [n] × [n]. By Lemma 4.2, there exists a word α383

which synchronizes [n] to a vertex x ∈ [n] in D(A) and there exists a word β which384

synchronizes [n] to a vertex y ∈ [n] in D(B). Since A is irreducible, there exists a385

word γ over [m] such that x
γ−−−→

D(A)
y. Let β′ be the reversal of β. It is easy to see that386

w
α−−−→

D(A)
x

γ−−−→
D(A)

y
β′

−−−→
D(A)

z387

for all w, z ∈ [n]. That is, A is primitive.388

Proof of Theorem 2.1. Immediate from Lemma 4.1 (1) and Lemma 4.3 (1).389

Proof of Theorem 2.2. By Lemma 4.1 (2) and Lemma 4.3 (2).390

5. Hurwitz ergodicity and Hurwitz primitivity.391

5.1. Exponents. We start with a folklore relation between ergodic exponent392

and the Černý function [5, 58].393

Lemma 5.1. Let A = (A1, . . . , Am) be an m-tuple over NZ1(n). If A is ergodic,394

then e(A) ≤ c(n).395

Proof. Let B be the set396 ⋃
i∈[m]

{B ∈ A : B(x, y) > 0 implies Ai(x, y) > 0 for all x, y ∈ [n] } .397

Notice that B is simply the set of n by n automaton matrices whose support is398

contained in the support of any one of A. It surely holds that B is ergodic and399

e(A) ≤ e(B) ≤ c(n).400
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1 2 1

D(A)

1 2 1

3 3

D(A(2))

Fig. 1. The arc-labelled digraphs corresponding to A and A(2), where A = (A1, A2) and
A(2) = (A1, A2, A3 = A1A2 +A2A1).

x y

x y′

1 2 3

2 3 1

Two walks in D(A).

x y

x y′

x y′′

1 2 3

2 3 1

2 1 3

4

4

5

5

Some walks in D(A(2)).

Fig. 2. Let A = (A1, A2, A3) and A(2) = (A1, A2, A3, A4 = A1A2 + A2A1, A5 = A1A3 +

A3A1, A6 = A2A3+A3A2). Observe that x
(4,3)−−−−−→

D(A(2))
y, x

(4,3)−−−−−→
D(A(2))

y′′, x
(2,5)−−−−−→

D(A(2))
y′′ and x

(4,3)−−−−−→
D(A(2))

y′. These imply that y ≈A(2) y′′ and y′′ ≈A(2) y′, yielding y ≈A(2) y′.

For any two words β = β1 · · ·βℓ and β′ = β′
1 · · ·β′

ℓ, we say that β and β′ differ by401

a swapping at i ∈ [ℓ− 1] if βi = β′
i+1, βi+1 = β′

i and βj = β′
j for all j ∈ [ℓ] \ {i, i+ 1}.402

Since the symmetric group on [ℓ] is generated by transpositions of successive numbers,403

we know that for any two words β and β′ of the same Parikh vector, we can find a404

sequence of words β(1) = β, β(2), . . . , β(t− 1), β(t) = β′ such that β(k) and β(k + 1)405

differ by a swapping for all k ∈ [t − 1]. Let A = (A1, . . . , Am) be an m-tuple over406

Matn(R≥0). We reserve the notation A(2) for the set407

{Ai, AiAj +AjAi : i, j ∈ [m]};408

see Figure 1 for an illustration. We are now ready to establish Lemma 5.2, which409

presents a reduction from Hurwitz ergodic sets of matrices to simply ergodic sets of410

matrices. Note that our work in section 4 displays the similarity in primitivity and411

Hurwitz primitivity, while Lemma 5.2 exposes a strong link between ergodicity and412

Hurwitz ergodicity.413

Lemma 5.2. Let A be a Hurwitz ergodic m-tuple over NZ1(n). Then A(2) is414

ergodic and he(A) ≤ 2 e(A(2)) ≤ 2 c(n).415

Proof. Since every matrix in A(2) is a Hurwitz product over A of length at most 2,416

it holds that he(A) ≤ 2 e(A(2)). Under the assumption that A(2) is ergodic, Lemma 5.1417

gives e(A(2)) ≤ c(n). Therefore, our task is to show that A(2) is ergodic.418

We first consider the case that A is irreducible. Fix x ∈ [n] and take arbitrarily419

(y, y′) ∈ [n] × [n]. We get from Lemma 3.3 that A is Hurwitz primitive and so there420

exists τ ∈ Zm≥0 such that (x, x)
τ

9999
D(A)

K (y, y′). Assume that x
β−−−→

D(A)
y and x

β′

−−−→
D(A)

y′421

for two words β and β′ having the same Parikh vector τ . We then pick a sequence422
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of words β(1) = β, β(2), . . . , β(t− 1), β(t) = β′ such that β(k) and β(k + 1) differ by423

a swapping for all k ∈ [t − 1]. Since A ⊆ NZ1, we can assume x
β(k)−−−→
D(A)

y(k) for all424

k ∈ [t], where y(1) = y and y(k) = y′. Accordingly, one can find a word γ(k) such425

that (x, x)
γ(k)−−−−−→

D(A(2))
(y(k), y(k + 1)) for each k ∈ [t − 1]. Since A(2) ⊇ A and A is426

irreducible, we know that A(2) is irreducible. By Lemma 4.1 (2), we thus conclude427

that x ≈A(2) x and y = y(1) ≈A(2) · · · ≈A(2) y(k) = y′. We refer the reader to Figure 2428

for the simple idea behind this line of argument. An application of Lemma 4.2 (2)429

now yields that A(2) is ergodic.430

We next turn to the case that A is not irreducible. For any subset X of [n], we431

write A[X] for the m-tuple (A1[X], . . . , Am[X]), where, for each i ∈ [m], Ai[X] is the432

submatrix of Ai induced by X. Since A is Huiwitz ergodic, we can find a strongly433

connected component X of D(A) such that from every y ∈ [n] there exists a walk434

of D(A) leading into X. Observe that A[X] ⊆ NZ1. Let k be the size of X and435

enumerate [n] \X as y1, . . . , yn−k. For every i ∈ [n− k], there exists a walk α(i) from436

yi to some vertex in X. Then (y1, . . . , yn)
α−−−→

D(A)
(x1, . . . , xn), where xi ∈ X for all437

i ∈ [n] and α = α(1)α(2) · · ·α(n − k). On the other hand, since A[X] is irreducible438

and Hurwitz ergodic, we already know above that A[X](2) possesses an ergodic word439

α′. It follows that A(2) has αα′ as an ergodic word, as was to be shown.440

Theorem 5.3. For all n ∈ N, heNZ1(n) ≤ 2 c(n) = O(n3).441

Proof. Apply Theorem 2.4 and Lemma 5.2.442

Theorem 5.4. For all n ∈ N, hpNZ1
(n) ≤ 2 c(n) + ⌊ (n−1)(n+3)

4 ⌋ = O(n3).443

Proof. This follows directly from Lemma 3.3 and Theorem 5.3.444

5.2. Finding Hurwitz ergodic vector and Hurwitz primitive vector. Our445

proofs of Theorems 5.3 and 5.4 are constructive and the idea there will enable us to446

find a short Hurwitz primitive (Hurwitz ergodic) vector in polynomial time, thus447

providing an answer to [44, Problems 2 and 4].448

Algorithm 5.1 Find a Hurwitz ergodic vector for a set of matrices belonging to NZ1.

Require: Input a Hurwitz ergodic m-tuple A over NZ1(n).
1: Construct an m-tuple B = (B1, . . . , Bm) over Matn(R≥0) where Bi(x, y) ={

1, if Ai(x, y) > 0,

0, otherwise,
for all i ∈ [m] and x, y ∈ [n].

2: Construct the matrix set C = B(2) and let ℓ = | C |.
3: Find a map f from [ℓ] to

(
[m]
1

)
∪
(
[m]
2

)
such that for every k ∈ [ℓ], either Ck =

Bi = Bj or Ck = BiBj +BjBi, where f(k) = {i, j}.
4: Find an ergodic word α of C of length s = O(n3).
5: Calculate τ ∈ Zm≥0 where τ(i) = |{j ∈ [s] : i ∈ f(αj)}| for each i ∈ [m].
6: return τ .

Theorem 5.5. For any Hurwitz ergodic m-tuple A over NZ1(n), Algorithm 5.1449

finds a Hurwitz ergodic vector τ for A with |τ | = O(n3) in time O(n3m2).450

Proof. The time complexity of obtaining B is O(n2m). In order to get C and f ,451

it suffices to do O(m2) multiplications of two matrices of order n, and this work costs452
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time O(n3m2). By Lemma 5.2, C is ergodic. There is an algorithm to find an ergodic453

product α of length O(n3) over C in time O(n3m2); see for example [44, Algorithm454

2, Theorem 9]. Since the length of α is O(n3), one can calculate the vector τ in time455

O(n3m). Recall that every matrix in C either belongs to B or equals to BiBj +BjBi456

for some i, j ∈ [m]. Therefore, it holds457

Bτ =
∑

Ψ(β)=τ

Bβ ≥ Cα > 0,458

which then ensures that Aτ > 0. Also note that |τ | ≤ 2s = O(n3). Finally, we can459

check that the running time of Algorithm 5.1 is O(n3m2).460

Theorem 5.6. There exists an algorithm to find a Hurwitz primitive vector τ ∈461

Zm≥0 with |τ | = O(n3) in time O(n3m2) for any given Hurwitz primitive m-tuple A462

over NZ1(n).463

Proof. By Theorem 5.5, in time O(n3m2) one obtains a vector ϕ ∈ Zm≥0 such that464

Aϕ has a positive column, say the x-th column, and |ϕ| = O(n3). Let D = D(A) be465

the arc-labelled digraph on [n]. Because A is Hurwitz primitive, D has to be strongly466

connected. Within time O(n2m) we can find a Hamiltonian walk H of D starting467

at x and of length O(n2): List all vertices of D as x1, . . . , xn where x1 = x; find a468

shortest path from xi to xi+1 for i ∈ [n−1]; concatenate all these paths. Let ψ ∈ Zm≥0469

be the vector such that ψ(k) equals the number of arcs with label k, counted with470

multiplicity, appearing in the Hamiltonian walk H for all k ∈ [m]. Let τ = ϕ + ψ.471

Following the proof of Lemma 3.3, we see that τ is a Hurwitz primitive vector of A.472

Meanwhile, |τ | = O(n3) is trivial to see.473

6. Ergodicity and primitivity. The digraph H used in the proof of the sub-474

sequent Theorem 6.1 appears already in the proof of Voynov [58, Theorem 1] for475

pNZ2
(n) ≤ n3+n2

2 − 2n + 1. Al’pin and Al’pina [2, Section 4] construct an analogous476

digraph in their algorithm for finding the maximum partition preserved by any given477

irreducible set of matrices belonging to NZ2. It is a pleasure that Theorem 6.2, our478

improvement of corresponding results from [24, 45], just rests on these old simple479

ideas.480

Theorem 6.1. For any m-tuple A over NZ1(n), there exists an algorithm of time481

complexity O(n2m) which checks whether or not A is ergodic.482

Proof. Construct a digraph H on the vertex set [n]× [n] such that there is an arc483

from (x, y) to (x′, y′) inH if and only if there exists A ∈ A satisfying A(x, x′)A(y, y′) >484

0. Let V1 = {(z, z) : z ∈ [n]} be the diagonal of [n] × [n] and V2 = ([n] × [n]) \ V1.485

We claim that A is ergodic if and only if for all vertices (x, y) ∈ V2 there exists486

a walk in H going from (x, y) into V1. Indeed, the ‘only if’ part is simply due to487

Lemma 3.1, while the ‘if’ part is guaranteed by Lemma 3.1 and Lemma 4.2 (2).488

Using breadth-first search [13, Section 22.2], it costs time O(n2m) to check489

whether or not all vertices from V2 can reach V1 in H.490

Theorem 6.2. For any m-tuple A over NZ2(n), there exists an O(n2m)-time491

algorithm to determine whether or not A is primitive.492

Proof. By virtue of Lemma 4.2 (2) and Lemma 4.3 (2), saying that A is primitive493

amounts to saying that it is both irreducible and ergodic. Using the classical algorithm494

of Tarján [53, Theorem 13], we can check whether or not A is irreducible in time495

O(n2m). By Theorem 6.1, we can determine whether or not A is ergodic in time496

O(n2m).497

This manuscript is for review purposes only.
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the Occasion of His 60th Birthday, H.-J. Böckenhauer, D. Komm, and W. Unger, eds.,633
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