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Abstract

Let S be a transformation semigroup acting on a set Ω. The action of S on Ω can be
naturally extended to be an action on all subsets of Ω. We say that S is `-homogeneous
provided it can send A to B for any two (not necessarily distinct) `-subsets A and B of
Ω. On the condition that k ≤ ` < k + ` ≤ |Ω|, we show that every `-homogeneous
transformation semigroup acting on Ω must be k-homogeneous. We report other variants of
this result and suggest a matroid framework for further research along the same direction.

Keywords: automaton, Grassmannian, inclusion operator, permutation group, phase space, valued
poset.
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1 Phase spaces of transformation semigroups
Let Γ be a digraph, namely a pair consisting of its vertex set V(Γ) and arc set E(Γ) ⊆
V(Γ)×V(Γ). We call Γ symmetric if (u, v) ∈ E(Γ) if and only if (v, u) ∈ E(Γ). For any
A ⊆ V(Γ), we adopt the notation Γ[A] for the subdigraph of Γ induced by A which has
vertex set A and arc set E(Γ) ∩ (A × A). The number of weakly connected components
and the number of strongly connected components of Γ will be dubbed wcc(Γ) and scc(Γ),
respectively.

For a set Ω, all maps from Ω to itself form the set ΩΩ. For each g ∈ ΩΩ and α ∈ Ω,
we write αg for the image of α under the map g. The composition of maps provides an
associative product on the set ΩΩ and thus turns it into a monoid, namely a semigroup with
a multiplicative unit. We call this monoid the full transformation monoid on Ω and denote
it by T(Ω). A subset of T(Ω) which is closed under map composition, whether or not it
contains the identity map on Ω, is called a transformation semigroup acting on Ω. Let
S be a transformation semigroup on Ω. We say that S is transitive on a set A ⊆ Ω if for
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every α, β ∈ A we can find g ∈ S such that αg = β; we call S transitive if S is transitive
on Ω. If the transformation semigroup S is generated by a set G ⊆ ΩΩ, namely S consists
of products of elements of G of positive length, we call (S,G) a deterministic automaton
on Ω [41, §1]. The phase space of an automaton (S,G) on Ω, denoted by Γ(S,G), is
the digraph with vertex set Ω and arc set {(α, αg) : α ∈ Ω, g ∈ G}. When Ω has at
least two elements, the claim that S is transitive is equivalent to the claim that Γ(S,G) is
strongly connected for any generator setG of S. We write Γ(S, S) simply as Γ(S) and note
that each strongly/weakly connected component of Γ(S) coincides with a strongly/weakly
connected component of Γ(S,G) for any generator set G of S. For all work in this paper,
we can simply focus on Γ(S) instead of considering Γ(S,G) for any specific generator set
G. We emphasize Γ(S,G) from the phase space viewpoint here to highlight the connection
between semigroup theory and automaton theory, and to indicate the role played by the
choice of G in some problems related to various distance functions on the phase space,
including Černý conjecture. For any set Ω, a subset of T(Ω) forms a permutation group
on Ω whenever it is a transformation semigroup and each element has an inverse in it,
namely it is a set of bijective transformations of Ω and is closed under compositions and
taking inverses. Permutation groups correspond to reversible deterministic automata.

Let Ω be a set. We follow the common practice to use 2Ω for the power set of Ω. For
each g ∈ T(Ω), let g be the element in T(2Ω) that sends each A ∈ 2Ω to Ag .

= {ag : a ∈
A}. More generally, for each G ⊆ T(Ω), G refers to the set {g : g ∈ G}. For any trans-
formation semigroup S on Ω and any generator set G of S, S is known to be the powerset
transformation semigroup of S acting on 2Ω and (S,G) is known to be the powerset
automaton of (S,G). It may be interesting to iterate the powerset automaton construction
and examine the evolution of the phase spaces of the resulting automata. Homogeneity is a
natural concept from this point of view. For any positive integer k ≤ |Ω|, a transformation
semigroup S on Ω is k-homogeneous if the transformation semigroup S is transitive on(

Ω
k

)
.
Let A and Ω be two sets with A ⊆ Ω. For any g ∈ ΩΩ, write g|A for the restriction of

g on A; for any f ∈ AA, write f |Ω for the lift of f to Ω, which is defined to be the element
g ∈ ΩΩ such that g|A = f and g fixes every element of Ω \ A. Let S be a transformation
semigroup on Ω. The stabiliser permutation group of (S,A) is the permutation group
SA

.
= {g|A : g ∈ S,Ag = A} acting on A. The relative transformation semigroup of

(S,A) is the transformation semigroup S̃A
.
= {g|A : g ∈ S,Ag ⊆ A} acting on A. Note

that S̃A may not be transitive on A even when S is transitive on A.

Theorem 1.1. Let Ω be a set and let k and ` be two positive integers such that k ≤ ` <
k + ` ≤ |Ω|. Let S be a transformation semigroup on Ω and let Γ be the phase space of S.

(1) If S is `-homogeneous, then it is k-homogeneous.

(2) If Ω is a finite set, then wcc(Γ[
(

Ω
k

)
]) ≤ wcc(Γ[

(
Ω
`

)
]).

(3) Let A ∈
(

Ω
k

)
and B ∈

(
Ω
`+1

)
. If Ω is finite and S is (` + 1)-homogeneous, then

scc(Γ(SA)) = wcc(Γ(SA)) ≤ wcc(Γ(SB)) = scc(Γ(SB)).

Conjecture 1.2. Take a finite set Ω and two positive integers k and ` such that k ≤ ` <
k + ` ≤ |Ω|. Let S be an `-homogeneous transformation semigroup acting on Ω. For any
A ∈

(
Ω
k

)
and B ∈

(
Ω
`

)
, it holds wcc(Γ(S̃A)) ≤ wcc(Γ(S̃B)).
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When restricting to permutation groups, the results in Theorem 1.1 are all known more
than 40 years ago: (1) for an infinite set Ω was discovered by Brown [7, Corollary 1]; (1)
and (2) for a finite set Ω were derived by Livingstone and Wagner [23, Theorem 1]; (3),
as well as Conjecture 1.2 for permutation groups, was proved by Cameron [10, Proposition
2.3]. Let G be a group acting on a finite set Ω and let k and ` be two positive integers such
that k ≤ ` < k + ` ≤ |Ω|. By Theorem 1.1 (2), or more precisely Livingstone-Wagner
Theorem [23, Theorem 1], we know that the number of G-orbits on

(
Ω
`

)
is no less than the

number of G-orbits on
(

Ω
k

)
. As an improvement of this fact, Siemons [34, Corollary 4.3]

found a natural linear space whose dimension equals the integer wcc(Γ[
(

Ω
`

)
])−wcc(Γ[

(
Ω
k

)
])

and he [34, Theorem 4.2] even obtained an algorithm to reconstruct the G-orbits on
(

Ω
k

)
from the information on the G-orbits on

(
Ω
`

)
without reference to the group G.

Example 1.3. Let Ω be a set with a linear order≺ on it. A map g ∈ ΩΩ is order-preserving
with respect to ≺ provided αg is not bigger than βg in ≺ whenever α is not bigger than β
in ≺. Let S be the monoid consisting of all order-preserving maps on Ω with respect to the
given linear order ≺. It is easy to see that S is `-homogeneous for all ` ≤ |Ω|. Note that
the only permutation contained in S is the identity map in case that Ω is a finite set. This
suggests that you may not be able to read Theorem 1.1 directly from those known facts on
permutation groups.

Question 1.4. Let Ω be a finite set and let k and ` be two positive integers such that
k ≤ ` < k + ` ≤ |Ω|. Let S be a transformation semigroup on Ω and let Γ be the phase
space of S.

(1) Is there a counterpart of [34, Corollary 4.3] which explains the nonnegativeness of the
integers wcc(Γ[

(
Ω
`

)
])−wcc(Γ[

(
Ω
k

)
]) and scc(Γ(SB))− scc(Γ(SA)) for any A ∈

(
Ω
k

)
and B ∈

(
Ω
`

)
?

(2) Is there an algorithm to determine the weakly connected components of Γ[
(

Ω
k

)
] from

the weakly connected components of Γ[
(

Ω
`

)
] without reference to the transformation

semigroup S?

(3) Is it true that scc(Γ[
(

Ω
k

)
]) ≤ scc(Γ[

(
Ω
`

)
])?

Neumann [27] asked whether every λ-homogeneous permutation group is θ-homogeneous
for all cardinals λ > θ ≥ ℵ0. Assuming Martin’s Axiom, Shelah and Thomas [33] gave a
negative answer to it. Hajnal [18] supplied an example to show that 2θ-homogeneity does
not imply θ-homogeneity. For each statement in Theorem 1.1, Conjecture 1.2, and Ques-
tion 1.4, it is interesting to see whether or not they hold when the set Ω is infinite. We are
also wondering if the rich theory on oligomorphic permutation groups [11] should have a
counterpart for transformation semigroups.

For any two positive integers k and `, we say that a transformation semigroup S acting
on Ω is (k, `)-homogeneous provided for every A ∈

(
Ω
k

)
and B ∈

(
Ω
`

)
we can find g ∈ S

such that Ag ∩ B ∈ {Ag,B}. Araújo and Cameron [2] have studied (k, `)-homogeneous
permutation groups. Beyond the homogeneity property discussed so far, there has been
an active study of those permutation groups which are transitive on the set of all ordered
or unordered partitions of a set of a given shape [1, 15, 24, 26]. There are many ways
to define corresponding properties for transformation semigroups. A systematic study of
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the extension of the results on permutation groups to transformation semigroups should be
fruitful.

For a linear space V , the Grassmannian Gr(V ) is ∪∞k=0 Gr(k, V ), where Gr(k, V ) is
the set of all k-dimensional linear subspaces of V for each nonnegative integer k. Let Ω
be a finite set and F be a field. We mention that Gr(k, FΩ) is a q-analogue of

(
Ω
k

)
and

their relationship is like the one between Johnson graphs and Grassmann graphs [28]. For
each prime power q and positive integer n, we write Fq for the q-element finite field and
write Matn(Fq) for the multiplicative semigroup of all n by n matrices over Fq . Let k, `
and n be three nonnegative integers such that k ≤ ` ≤ n. The set of all linear subspaces
of Fnq is denoted by Gr(Fnq ) = Pq,n and the set of all dimension-k linear subspaces of Fnq
is denoted by Gr(k,Fnq ) = Pkq,n. The set of all affine subspaces of Fnq is denoted by Aq,n
and the set of all dimension-k affine subspaces of Fnq is denoted by Akq,n. We are ready
to display Theorem 1.5, a q-analogue of Theorem 1.1. If the semigroup S ≤ Matn(Fq)
is a subgroup of the general linear group GLn(Fq), Theorem 1.5 was already reported by
Stanley in 1982 [36, Corollary 9.9].

Theorem 1.5. Let k, ` and n be three positive integers such that k < ` ≤ n− k and let Fq
be the finite field of q elements. Let S ≤ Matn(Fq) be a linear transformation semigroup
acting on Fnq . For each g ∈ S, write gP for g|Pq,n

and write gA for g|Aq,n
. Let SP be the

transformation semigroup {gP : g ∈ S} acting on Pq,n and let SA be the transformation
semigroup {gA : g ∈ S} acting on Aq,n. We use ΓP and ΓA for the phase spaces of SP

and SA, respectively.

(1) wcc(ΓP [Pkq,n]) ≤ wcc(ΓP [P`q,n]).

(2) wcc(ΓA[Akq,n]) ≤ wcc(ΓA[A`q,n]).

(3) If SP is transitive on P`q,n, then it is transitive on Pkq,n.

Our work towards Theorems 1.1 and 1.5 makes use of the existing techniques developed
in the corresponding work on permutation groups. To prepare a proof for Theorems 1.1
and 1.5 and to discuss relevant problems, we move on in Section 2 to a general setting in
which the sets are assigned a valued poset structure and the transformations on the sets
are assumed to be structure-preserving. We regard Theorem 1.1 as a statement on Boolean
semirings, a special kind of valued posets, and so, following the general strategy described
in Section 2, we can give a proof of Theorem 1.1 in Section 3. In Section 4, we initiate a
discussion of the homogeneity problems for transformation semigroups acting on matroids,
which provides much further direction to go beyond Theorem 1.1. Especially, we sketch a
proof of Theorem 1.5 there.

2 Valued posets
This section looks technical but our subject here is to formulate an approach of getting re-
sults like Theorems 1.1 and 1.5, which is used in different concrete settings in the literature
on permutation groups already.

For ease of notation, for any two sets Ω and Ψ, if they are different or if we do not
emphasize that they may be equal, the image of ω ∈ Ω under a map g ∈ ΨΩ is denoted
g(ω); recall that it is often written as ωg in many places of the paper when Ω = Ψ. A
poset P consists of a set Ω and a binary relation <P on it which is transitive and acyclic;
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namely we require that α <P α never happens, and that α <P β and β <P γ implies
α <P γ for all α, β, γ ∈ Ω. We often just write P for its ground set Ω and we say the poset
P is finite if |P | is finite. For each α ∈ P , the principal ideal generated by α is the set
{β : β <P α} ∪ {α} ⊆ P , which we denote by P↓(α); the principal filter generated by
α is the set {β : α <P β} ∪ {α} ⊆ P , which we denote by P↑(α). A map g from a poset
P to a poset Q is order-preserving if g(β) ∈ Q↓(g(α)) holds whenever β ∈ P↓(α). We
use End(P ) to denote the set of all order-preserving maps from P to itself.

Let Z≥0 be the set of nonnegative integers which carries a natural poset structure such
that a < b in Z≥0 if and only if b − a is a positive integer. A valuation on a poset P is a
order-preserving map rP from P to the poset Z≥0. When we say P is a valued poset, we
are considering the poset P together with a valuation rP , though the valuation may be only
implicitly indicated. The rank of a valuated poset P , denoted by r(P ), is the maximum
value of rP (α) for α ∈ P if it exists and is ∞ otherwise. For a poset P , the symbols
like <P and rP will often be abbreviated to < and r when no confusion can arise. Let
P be a valued poset. For any k ∈ Z≥0, we write Pk for the set {α ∈ P : r(α) = k}.
For any nonnegative integers k ≤ `, we call the poset P (k, `)-finite provided Pk 6= ∅,
P` 6= ∅ and the set P` ∩ P↑(α) is finite for every α ∈ Pk; we call P (`, k)-finite provided
Pk 6= ∅, P` 6= ∅ and the set P↓(β) ∩ Pk is finite for every β ∈ P`; we call g ∈ End(P )
a (k, `)-hereditary endomorphism if rP (g(α)) = rP (α) = k ensures that g induces a
bijection from the set P` ∩ P↑(α) to P` ∩ P↑(αg) for all α ∈ Pk; we call g ∈ End(P )
an (`, k)-hereditary endomorphism if rP (g(α)) = rP (α) = ` ensures that g induces a
bijection from the set Pk ∩ P↓(α) to Pk ∩ P↓(αg) for all α ∈ P`. For any k, ` ∈ Z≥0,
we designate by hEndk,`(P ) the set of all (k, `)-hereditary endomorphisms of the valued
poset P .

Let S be a transformation semigroup on a valued poset P and let G be a generating set
of S. For any two positive integers k and ` with k < ` ≤ r(P ), we set ΠS,G(k, `) to be
the digraph with vertex set Pk and arc set {(α, α′) : ∃g ∈ G, β ∈ P` s.t. βg ∈ P`, α ∈
Pk ∩ P↓(β), α′ = αg}; we set ΠS,G(`, k) to be the digraph with vertex set Pk and arc set
{(α, α′) : ∃g ∈ G, β ∈ P` s.t. αg ∈ P`, α ∈ Pk ∩P↑(β), α′ = αg}. We use the shorthand
ΠS(k, `) for ΠS,S(k, `).

Lemma 2.1. Let P be a valued poset. Take two nonnegative integers k and ` satisfying
k, ` ≤ r(P ). Let S be a transformation semigroup acting on P such that S ⊆ hEnd`,k(P ),
let G be a generator set of S, and let Γ = Γ(S,G). Assume that P is (`, k)-finite. If every
weakly connected component of Γ[P`] is strongly connected, then so is ΠS,G(k, `).

Proof. Assume that (α, α′) ∈ E(ΠS,G(k, `)). Our task is to show that there is a walk from
α′ to α of positive length in ΠS,G(k, `), namely there exists f ∈ S such that α′f = α.

Without loss of generality, we assume that k < `. By the definition of ΠS,G(k, `), we
can find g ∈ S and β ∈ P` such that α ∈ Pk ∩ P↓(β), βg ∈ P` and α′ = αg. Since
every weakly connected component of Γ[P`] is strongly connected, we can find h ∈ S
such that (βg)h = β. Since β(gh) = β and gh ∈ hEnd`,k(P ), it follows that gh induces
a permutation on Pk ∩ P↓(β). But from the assumption that P is (`, k)-finite, we see
that Pk ∩ P↓(β) is a finite set. This means that there exists a positive integer r such that
α(gh)r = α. Accordingly, for f = (hg)r−1h it holds α′f = (αg)(hg)r−1h = α(gh)r =
α, finishing the proof.

For any set Ω, QΩ refers to the linear space of all rational functions on Ω with finite
supports. If P is a (k, `)-finite valued poset, the inclusion operator ζk,`P : QPk → QP` is
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the linear operator such that for all f ∈ QPk and β ∈ P`

(ζk,`P (f))(β) =

{ ∑
α∈Pk∩P↓(β) f(α), if k ≤ `;∑
α∈Pk∩P↑(β) f(α), if k > `. (2.1)

Lemma 2.2. Let P be a valued poset and let k and ` be two nonnegative integers such that
Pk and P` are both nonempty finite sets. Let S be a transformation semigroup on P such
that S ⊆ hEnd`,k(P ) and let Γ stand for Γ(S). Assume that ζk,`P is an injective linear map
from QPk to QP` .

(1) wcc(Γ[Pk]) ≤ wcc(ΠS(k, `)) ≤ wcc(Γ[P`]).

(2) If Γ[P`] is strongly connected, then so is Γ[Pk].

Proof. (1) The first inequality is a consequence of the fact that E(ΠS(k, `)) ⊆ E(Γ[Pk]).
Let W ⊆ QP` be the subspace of all functions which are constant on each weakly

connected component of Γ[P`]; let V ⊆ QPk be the subspace of all functions which
are constant on each weakly connected component of ΠS(k, `). Note that dim(V ) =
wcc(ΠS(k, `)) and dim(W ) = wcc(Γ[P`]) and so it suffices to demonstrate dim(V ) ≤
dim(W ).

By symmetry, we only deal with the case of k ≤ `. For every f ∈ V and every arc
(β, βg) of Γ[P`], we have

(ζk,`P (f))(βg) =
∑

α′∈Pk∩P↓(βg)

f(α′)

=
∑

α∈Pk∩P↓(β)

f(αg) (g ∈ hEnd`,k(P )) (2.2)

=
∑

α∈Pk∩P↓(β)

f(α) (f ∈ V )

= (ζk,`P (f))(β).

This says that ζk,`P (V ) ⊆ W . Hence, by the injectivity of ζk,`P , dim(V ) ≤ dim(W ), as
wanted.

(2) We know from (1) that wcc(ΠS(k, `)) = 1. By Lemma 2.1, we further see that
ΠS(k, `) is strongly connected. Since ΠS(k, `) is a spanning subgraph of Γ[Pk], Γ[Pk]
must be strongly connected, finishing the proof.

3 Boolean semirings
For any set Ω, the set BΩ

.
= ∪∞k=0

(
Ω
k

)
forms a poset under the inclusion relationship, which

is often known as the Boolean semiring over Ω – the set 2Ω gives rise to the Boolean alge-
bra over Ω. When we view BΩ as a valuated poset, unless stated otherwise, the valuation
will be r(A) = |A| for all A ∈ BΩ. For the valuated poset P = BΩ and 0 ≤ k < ` ≤ |Ω|,
we write the inclusion operator ζk,`P defined in Eq. (2.1) as ζk,`Ω . That is,

(ζk,`Ω (f))(B) =
∑
A∈(B

k)

f(A),
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for all f ∈ Q(Ω
k) and B ∈

(
Ω
`

)
.

Following a common approach in establishing homogeneity of permutation groups [10,
25], we will make use of the ensuing classical result about inclusion matrices. For a simple
proof of it, we refer the reader to [34, Theorem 2.4] and [13, Corollary].

Lemma 3.1. Let Ω be a finite set. Let k and ` be two nonnegative integers such that
k ≤ ` ≤ k + ` ≤ |Ω|. Then

ker ζk,`Ω = {0}.

Let Ω be a set and S be a transformation semigroup on Ω. Let Ω∗
.
= {(ω,C) : ω ∈

C ∈ 2Ω} and, for each g ∈ S, let g∗ be the transformation on Ω∗ which sends (ω,C)
to (ωg,Cg) for all (ω,C) ∈ Ω∗. Let S∗ stand for the transformation semigroup on Ω∗

consisting of all elements g∗ for g ∈ S. For all positive integers `, we use the following
notation:

Ω∗`
.
= {(ω,C) : ω ∈ C ∈

(
Ω

`

)
}

and
Γ∗` (S)

.
= Γ(S∗)[Ω∗` ].

Here is a result analogous to Lemma 2.1.

Lemma 3.2. Let m be a positive integer and let S be an m-homogeneous transformation
semigroup acting on a set Ω. Then the digraph Γ∗m(S) is symmetric. Especially, every
weakly connected component of Γ∗m(S) is strongly connected.

Proof. Take (ω,C) ∈ Ω∗m and g ∈ S such that |Cg| = m.Our task is to show the existence
of h ∈ S such that (ωg,Cg)h∗ = (ω,C). As S is m-homogeneous, we can find f ∈ S
such that Cgf = (Cg)f = C. Hence, the fact that |C| = m < ∞ allows us to obtain
a positive integer r for which (gf)r|C is the identity map on C. This means that we can
choose h to be f(gf)r−1.

Lemma 3.3. Let Ω be a set, let m be an integer satisfying |Ω| ≥ m > 1, and let S be a
transformation semigroup on Ω. For every X ∈

(
Ω
m

)
, it holds

scc(Γ(SX)) = wcc(Γ(SX)) ≤ wcc(Γ∗m(S)) = scc(Γ∗m(S)). (3.1)

Moreover, if S is m-homogeneous, then

scc(Γ(SX)) = wcc(Γ(SX)) = wcc(Γ∗m(S)) = scc(Γ∗m(S)). (3.2)

Proof. It is trivial that wcc(Γ(SX)) = scc(Γ(SX)) and so we call each strongly/weakly
connected component of Γ(SX) a component. By Lemma 3.2, every weakly connected
component of Γ∗m(S) is strongly connected. Therefore, we obtain wcc(Γ∗m(S)) = scc(Γ∗m(S))
and we can call each strongly/weakly connected component of Γ∗m(S) simply a component.
To prove Eq. (3.1), let us find an injective map ψ from the set of components of Γ(SX) to
the set of components of Γ∗m(S).

For each γ ∈ X , let the component of Γ∗m(S) containing (γ,X) be ψ′(γ). Take
(γ1, γ2) ∈ E(Γ(SX)). We may assume that γ1g = γ2 and Xg = X for some g ∈ S.
As (γ1, X)g∗ = (γ1g,Xg) = (γ2, X), we see that ψ′(γ1) = ψ′(γ2). For each com-
ponent C of Γ(SX), we can now choose any γ ∈ C and get a well-defined map ψ
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by setting ψ(C) = ψ′(γ). For every component C∗ of Γ∗m(S), let φ(C∗) be the set
{γ ∈ X : (γ,X) ∈ C∗}. It is routine to check that φψ(C) = C for every component C
of Γ(SX), proving that ψ is injective, as desired.

If S is m-homogeneous, for every component C∗ of Γ∗m(S), we have φ(C∗) 6= ∅ and
so φ and ψ are inverses of each other. This proves Eq. (3.2).

For any positive integers s, t and m, let R(s, t,m) denote the minimum integer N ≥ s
such that for any set Υ with |Υ| ≥ N and any partition of

(
Υ
s

)
into t equivalence classes

one can always find one equivalence class which contains
(
A
s

)
for some A ∈

(
Υ
m

)
. The

existence of this number is guaranteed by Ramsey’s Theorem [17, Chap. 2] [30].

Proof of Theorem 1.1. (1) If Ω is a finite set, the result follows from Lemma 2.2 (2) and
Lemma 3.1. We now assume that Ω is an infinite set. Surely, it suffices to show that S is
k-homogeneous under the assumption that it is (k+ 1)-homogeneous for a positive integer
k. The proof below essentially follows the proof presented by Bercov and Hobby for [6,
Corollary 1] and also the proof of Roy for [31, Theorem].

Fix an element Y ∈
(

Ω
k+1

)
. Since S is (k + 1)-homogeneous, for every X ∈

(
Ω
k

)
we

can find gX ∈ S such that XgX ∈
(
Y
k

)
and (X,XgX) ∈ E(ΠS(k, k + 1)). We define

a partition P of
(

Ω
k

)
into equivalence classes such that Z1 and Z2 are equivalent if and

only if Z1gZ1
= Z2gZ2

. Thanks to Ramsey’s Theorem, we know the existence of the finite
number R(k, k + 1, k + 1). This means that there exist W ∈

(
Y
k

)
and Y ′ ∈

(
Ω
k+1

)
such

that W ′gW ′ = W for all W ′ ∈
(
Y ′

k

)
. Take any X ∈

(
Ω
k

)
. By virtue of the fact that S

is (k + 1)-homogeneous, we can find h ∈ S such that Xh ∈
(
Y ′

k

)
, X(hgXh) = W and

(X,W ) ∈ E(ΠS(k, k + 1)). So far, what we see is that all elements of
(

Ω
k

)
can reach

the vertex W in the spanning subdigraph ΠS(k, k + 1) of Γ[
(

Ω
k

)
] in one step. Applying

Lemma 2.1 now then yields (1). Instead of utilizing Lemma 2.1, another way to see (1)
is to further show the existence of U ∈

(
Ω
k

)
such that U can reach all elements of

(
Ω
k

)
in

Γ[
(

Ω
k

)
] in one step. This can be done similar to the above process of getting the existence

of W . Since S is (k + 1)-homogeneous, for every X ∈
(

Ω
k

)
we can find hX ∈ S and

YX ∈
(
Y
k

)
such that YXhX = X . We define a partition P of

(
Ω
k

)
into equivalence classes

such that X and Z are equivalent if and only if YX = YZ . We can now continue with
Ramsey’s Theorem as above but we shall leave it to interested readers to fill in details.

(2) This is direct from Lemma 2.2 (1) and Lemma 3.1.

(3) Since S is (`+ 1)-homogenous, it follows from Lemma 3.3 that

wcc(Γ(SA)) = scc(Γ(SA)) ≤ wcc(Γ∗k(S)) = scc(Γ∗k(S))

and
wcc(Γ(SB)) = scc(Γ(SB)) = wcc(Γ∗`+1(S)) = scc(Γ∗`+1(S)).

It then remains to prove wcc(Γ∗`+1(S)) ≥ wcc(Γ∗k(S)).
We regard Ω∗ as a valued poset by putting r((α,X)) = |X| and requiring (α,X) <

(β, Y ) if and only if α = β ∈ Ω and X ( Y ⊆ Ω. Note that S∗ ⊆ hEnd`+1,k(Ω∗). In
view of Lemma 2.2 (1), it is sufficient to show that ζk,`Ω∗ is injective.
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For each nonnegative integer m and each α ∈ Ω, let Ω∗m,α
.
= {(α,A) : (α,A) ∈ Ω∗m}.

Corresponding to the partition Ω∗k = ∪α∈ΩΩ∗k,α and Ω∗`+1 = ∪β∈ΩΩ∗`+1,β , the Ω∗k ×Ω∗`+1

matrix ζk,`+1
Ω∗ is viewed as a partitioned matrix with blocks ζα,β , which are the submatrices

with row index set Ω∗k,α and column index set Ω∗`+1,α, where α, β ∈ Ω. Observe that

ζα,β =

{
ζk−1,`
Ω\{α}, if α = β;

0, otherwise.

Since (k − 1) + ` ≤ |Ω| − 1, it follows from Lemma 3.1 that ζα,α = ζk−1,`
Ω\{α} is of full row

rank for all α ∈ Ω. This implies that ζk,`+1
Ω∗ is an injective linear map, as desired.

Remark 3.4. Let Ω be a set, which is not necessarily finite. Let k and ` be two nonnegative
integers with k ≤ ` ≤ k + ` ≤ |Ω|. For all f ∈ Q(Ω

`) and A ∈
(

Ω
k

)
, we put

(ζ`,kΩ (f))(A) =
∑
A⊆B

f(B).

Making use of Lemma 3.1, it is easy to see that the linear transformation ζ`,kΩ : Q(Ω
`) →

Q(Ω
k) is always a surjective map. Unfortunately, we do not see if this observation is helpful

to get a counterpart of Theorem 1.1 (2) or Theorem 1.1 (3) when Ω is an infinite set.

For f ∈ ΨΩ, we sometimes need to talk about f(ω) for ω /∈ Ω. Following the practice
of those mathematics with natural multivalued operations [5, 9, 39], we create a universal
“don’t care” symbol ? /∈ Ψ and will set f(ω) = ?. We often regard ? as all possible values
in Ψ and so, whenever we have some addition operation + on Ψ, we extend it to Ψ ∪ {?}
by setting ?+ ψ = ? for all ψ ∈ Ψ ∪ {?}.

For any g ∈ ΩΩ and f ∈ Q(Ω
k), write fg†,k for the element in (? ∪ Q)(

Ω
k), where ?

stands for “don’t care” and can be thought of as the whole set Q, such that the following
holds for all A ∈

(
Ω
k

)
:

fg†,k(A) =

{
f(Ag), if Ag ∈

(
Ω
k

)
;

?, if Ag /∈
(

Ω
k

)
.

For any g ∈ ΩΩ, denote by Fix g†,k the set of f ∈ Q(Ω
k) for which

fg†,k(A) ∈ {f(A), ?}

holds for all A ∈
(

Ω
k

)
. If 1 < k ≤ ` ≤ |Ω|, the reasoning in Eq. (2.2) leads to the

commutative diagram in Fig. 1, which implies that all elements of Fix g†,k are mapped by
ζk,`Ω to Fix g†,` for any g ∈ ΩΩ.

4 Finite linear spaces and beyond
4.1 Homogeneity

When discussing transformation semigroups, we may often be more interested in those
which preserve some structures, say simplicial maps for simplicial complexes, continuous
maps for topological spaces, ordering preserving maps for posets, or adjacency-preserving
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f ζk,`Ω (f)

fg†,k ζk,`Ω (fg†,k)

ζk,`Ω

g†,k

ζk,`Ω

g†,`

Figure 1: The inclusion operator intertwines with every transformation g.

maps in matrix geometry [32, 40]. Unlike the work on group actions on posets [3] and
matroids [14], very little has been done on semigroup actions on these structures. We
conclude the paper by addressing a bit those transformations which preserve “independence
structure”, namely morphisms among matroids.

A matroid M consists of a ground set EM and a rank function rM from 2EM to the
set of nonnegative integers plus infinity such that the rank axioms are satisfied [8, §1.5].
The flats of a matroid, ordered by inclusion, form a very pretty structure, called geometric
lattice [16, p. 61]. Let M1 and M2 be two matroids and let f be a map from EM1

to EM2
.

We call f a weak map from M1 to M2 provided

rM1
(A) ≥ rM2

(Af)

holds for all A ⊆ EM1
and Af = {af : a ∈ A} ⊆ EM2

, and we call f a strong map from
M1 to M2 provided the preimage of any flat in M2 is a flat of M1 [21, 22, 35]. It is known
that all strong maps must be weak maps.

Let M be a matroid on the ground set EM = Ω. Let TM (Ω) (T∗M (Ω)) be the monoid
consisting of all elements of T(Ω) which are weak (strong) maps from M to itself. For
each nonnegative integer t, let Ft(M) be the set of all rank-t flats of M . If we know that S
is a subsemigroup of TM (Ω) (T∗M (Ω)) acting on Ω, we can define a digraph ΓM,t(S) on
Ft(M) as follows: for any X,Y ∈ Ft(M), there is an arc from X to Y if and only if there
is g ∈ S such that the minimum flat containing Xg in M is Y. What is the relationship
between the connectivity of ΓM,t(S) and ΓM,r(S) for different t and r? We can ask the
same question by imposing the extra condition that every element f ∈ S is a bijection of
Ω. If the matroid is a very special uniform matroid, namely a matroid in which all sets
are independent, one can see that what is discussed in Section 1 becomes a very special
case of this general setting. A result of Guiduli [4, Theorem 9.4] is more general than
Lemma 3.1, which and its relatives should be useful for understanding the phase spaces of
the semigroups of matroid morphisms.

Example 4.1. Let M be the non-Pappus matroid. The maximum rank of a flat of M is 3.
Note that |F1(M)| = 9 and |F2(M)| = 8. If we take the trivial group G = {1}, then the
number of its orbits on F1(M) is larger than the number of its orbits on F2(M).

Example 4.2. Let M be the Vámos matroid and let S be a subsemigroup of T ∗M (EM ).
It holds wcc(ΓM,1(S)) ≤ wcc(ΓM,2(S)) ≤ wcc(ΓM,3(S)). Moreover, for the following
three statements, we have (1)⇒ (2)⇒ (3).

(1) ΓM,3(S) is strongly connected;



Ars Math. Contemp. x (xxxx) 1–x 11

f Mk,`
q,n(f)

fg‡,k Mk,`
q,n(fg‡,k)

Mk,`
q,n

g‡,k

Mk,`
q,n

g‡,`

Figure 2: The inclusion operator intertwines with every linear transformation g.

(2) ΓM,2(S) is strongly connected;

(3) ΓM,1(S) is strongly connected.

Proof. Let P be the geometric lattice F(M). Let f ∈ S and let f ′ : P → P be the
map sending a flat X to the minimum flat containing Xf in M . We can calculate that
ker(ζk,`F(M)) = {0} when (k, `) ∈ {(1, 2), (1, 3), (2, 3)}. In light of Lemma 2.2, we will be
done if we can show that f ′ ∈ hEnd`,k(P ) for (k, `) ∈ {(1, 2), (1, 3), (2, 3)}, that is, we
want to show that f |A induces a bijection on the set Pk ∩ P↓(A) for all A ∈ P = F(M)
satisfying rM (Af ′) = rM (A) = `. If f |A is a bijection from A to Af ′, then it surely
induces a bijection on the set Pk ∩ P↓(A). If f |A is not a bijection from A to Af ′, then
we have |A| = 4 and |Af ′| = 3. This implies the existence of B ⊆

(
Af ′

2

)
such that

|f−1(B)| = 3. Note that B ∈ F(M) and f−1(B) /∈ F(M), which is impossible as f is
assumed to be a strong map.

Remark 4.3. Compared with the Fundamental Theorem of Projective (Affine) Geometry
[12, 29], we think that weak/strong maps and bijective weak/strong maps for matroids are
natural extensions of linear transformations and invertible linear transformations for linear
spaces. We also mention the well-adopted viewpoint that full permutation group and the
full transformation semigroup can be interpreted as the general linear group and the linear
transformation semigroup over the field with one element. When the linear space is over a
finite field, more results like Lemma 3.1 are known and so more progress can be expected.

As q-analogues of the set inclusion operator specified in Eq. (2.1), we define two linear
transformations Mk,`

q,n : QP
k
q,n → QP

`
q,n and Nk,`

q,n : QA
k
q,n → QA

`
q,n as follows:

(Mk,`
q,n(f))(Y )

.
=

∑
X≤Y,X∈Pk

q,n

f(X),

and
(Nk,`

q,n(f ′))(Y ′)
.
=

∑
X′≤Y ′,X′∈Ak

q,n

f(X ′),

for all f ∈ QP
k
q,n , Y ∈ P`q,n and f ′ ∈ QA

k
q,n , Y ′ ∈ A`q,n.

Take g ∈ Matn(Fq), which naturally gives rise to a transformation on Fnq . For any

f ∈ FP
k
q,n

q , designate by fg‡,k the element in (? ∪ Fq)P
k
q,n , where ? is the “don’t care”
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symbol, such that the following holds for all X ∈ Pkq,n:

fg‡,k(X) =

{
f(Xg), if Xg ∈ Pkq,n;
?, if Xg /∈ Pkq,n.

Analogous to the deduction of Fig. 1, we can derive the commutativity of the diagram in

Fig. 2 for all f ∈ FP
k
q,n

q on the condition that 1 < k ≤ ` ≤ n.
We are ready to present below a q-analogue of Lemma 3.1 and then those of Theo-

rem 1.1 (1) and (2).

Lemma 4.4 (Kantor [19]). Let k, ` and n be three nonnegative integers such that k ≤ ` ≤
k + ` ≤ n and let q be any prime power. Then

ker(Mk,`
q,n) = {0}

and
ker(Nk,`

q,n) = {0}.

Proof of Theorem 1.5. Note that SP ⊆ hEndk,`(Pq,n) and SA ⊆ hEndk,`(Aq,n). The
results are thus direct from Lemmas 2.2 and 4.4.

Remark 4.5. Kantor [20, Theorem 2] determined all the ordered-basis-transitive finite geo-
metric lattices of rank at least three: Roughly speaking, they are Boolean lattices, projective
(affine) geometries, and four sporadic designs. Kantor’s classification theorem along with
Theorems 1.1 and 1.5 may be a basis for getting homogeneity results about ordered-basis-
transitive matroids.

If we want to address linear spaces over infinite fields, we may need some other tech-
niques. Indeed, we even do not know the answer to the small puzzle in the next example.

Example 4.6. Let n and k be two positive integers such that k < n. Fix a non-degenerate
inner product on Qn, say 〈, 〉. For each g ∈ GLn(Q), let g> stand for the adjoint of g,
namely the element such that 〈ug, v〉 = 〈u, vg>〉 for all u, v ∈ Qn, and we write g#

for (g−1)>. Let S ≤ GLn(Q) be a matrix group acting on Qn. If S is transitive on
the set of all dimension-k subspaces and if g# ∈ S for all g ∈ S, then S is transitive
on the set of dimension-(n − k) subspaces. To see this, fix a pair of subspaces (U,U ′)
which are orthogonal complements to each other with respect to 〈, 〉 and (dimU,dimU ′) =
(k, n − k). For each g ∈ S, we can see that Ug and U ′g# are orthogonal complements
to each other with respect to the given inner product 〈, 〉. Considering the set of pairs
{(Ug, U ′g#) : g ∈ S}, we see that the transitivity on dimension-k subspaces implies
transitivity on dimension-(n− k) subspaces.

If we only know that S is a matrix semigroup and (n, k) = (3, 2), can we still draw
the conclusion that S is transitive on the set of dimension-(n − k) subspaces from the
assumption of its transitivity on dimension-k subspaces?

4.2 Duality: A result of Stanley

In mathematics we encounter quite some nice duality phenomena, say Chow’s Theorem
[28, Corollary 3.1] and many duality concepts for matroids [8]. This section aims to discuss
the next result of Stanley [36, Corollary 9.9], for which we still do not know of a good
counterpart for transformation semigroup.
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Theorem 4.7 (Stanley). Let F be a finite field and let k and n be two positive integers
with k < n. For any subgroup G of GL(n, F ), the number of orbits of the action of G on
Gr(k, Fn) must be the same with the number of orbits of G acting on Gr(n− k, Fn).

Let F be a field and Ω be a set. For each linear subspace U ≤ FΩ, let U⊥ be the
subspace of FΩ given by

U⊥
.
= {f ∈ FΩ :

∑
ω∈Ω

f(ω)g(ω) = 0 for all g ∈ U}.

Take a matrix A ∈ FΩ×Ω and record its transpose by A>. For any f ∈ FΩ, which
can be thought of as a row vector indexed by Ω, the image of f under the action of A,
written as fA, can be thought of as the product of the row vector f and the matrix A.
The matrix A induces a transformation Â on Gr(FΩ) such that U ∈ Gr(FΩ) is sent to
UÂ

.
= {fA : f ∈ U}. It is easy to see that for any U,W ∈ Gr(V ) we have the

implication
UÂ = W =⇒W⊥Â> ≤ V ⊥; (4.1)

Especially, when A ∈ GLn(F ) it holds

UÂ = W ⇐⇒W⊥Â> = V ⊥. (4.2)

According to Taussky and Zassenhaus [38], we can find P ∈ GLn(F ) such that A> =
PAP−1. This means that Eqs. (4.1) and (4.2) become

UÂ = W =⇒ (W⊥P̂ )Â ≤ V ⊥P̂

and
UÂ = W ⇐⇒ (W⊥P̂ )Â = V ⊥P̂ , (4.3)

respectively. It is well-known that q-binomial coefficients (Gaussian coefficients) occur
in pairs, namely in any n-dimensional linear space over a finite field, the number of k-
dimensional subspaces is equal to the number of (n−k)-dimensional subspaces [16, Propo-
sition 5.31] [37, §3]. This observation is the special case of Theorem 4.7 for G being the
trivial group as well as a special case of Eq. (4.3) forA being the identity matrix. In general,
as a consequence of Eq. (4.3), for anyA ∈ GLn(F ), the number of k-dimension subspaces
of Fn fixed by A equals to the number of (n− k)-dimension subspaces of Fn fixed by A.
If F is a finite field and G is a subgroup of GLn(F ), in view of the Orbit Counting Lemma
(also known as Burnside’s Lemma), the above discussion leads to a proof of Theorem 4.7.

There is another way to verify Theorem 4.7. Let G ≤ GLn(Fq) and let k be a positive
integer fulfilling k ≤ n

2 . The group G can be seen as a permutation group acting on both
Gr(n − k,Fnq ) = Pkq,n and Gr(n − k,Fnq ) = Pn−kq,n ; we use Wk and Wn−k for the two
permutation modules accordingly. From Lemma 4.4 we see that Mk,n−k

q,n is an Fq-linear
isomorphism from Pkq,n to Pn−kq,n . Note that the commutative diagram in Fig. 2, which is
the q-version of Fig. 1, will hold for all positive integers k ≤ n

2 (including k=1), if we
assume furthermore that g comes from the group G. This then shows that Wk and Wn−k
are isomorphic permutation modules for G. In particular, the number of orbits of G on
Pkq,n and the number of its orbits on Pn−kq,n must be equal.

The above discussions are mainly about invertible linear operators over finite linear
spaces. If we have a single linear operator A ∈ Matn(F ), by considering its action on the



14 Ars Math. Contemp. x (xxxx) 1–x

linear space obtained by “collapsing” the kernel of A to zero, we can somehow still say
something similarly as above. When we have a subsemigroup S of the full linear transfor-
mation monoid acting on a finite linear space, different elements of S may have different
kernels and that makes it nontrivial to glean global information about the semigroup ac-
tion. In general, if we have a transformation g on a set Ω, we get a partition of Ω in which
two elements α and β fall into the same part provided αg = βg, and we call this partition
the kernel of g. For a permutation group, all elements of it have the same kernel. For a
transformation semigroup, the existence of different kernels may make some arguments
for permutation group invalid. We will study the kernels of elements from a transformation
semigroup in [42].
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