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Abstract

Let G be a countable connected graph and let r be a vertex of G. We show that one can always
find a spanning rooted tree T of G with root r so that for every edge xy of G which is outside of the
edge set of T , it holds that x are y are incomparable in the tree order generated by the rooted tree
T and that the father of x and the father of y in the rooted tree T are comparable in the same tree
order. When G is finite, this result is established by Bonamy, Bousquet and Thomasse in their study of
the Erdös-Hajnal conjecture. The countable version obtained here combined with our previous work on
submodular functions leads to some consequence on paths with large closed neighbourhood in a graph
weighted by a submodular function. We give examples to show that such a tree may not exist if we
remove the countability assumption on G.
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1 Introduction
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Figure 1: A rooted caterpillar.

A graph G consists of its vertex set V(G) and edge set E(G) ⊆
(
V(G)

2

)
. For a graph G and a vertex

x ∈ V(G), the neighbour of x in G, denoted by NG(x), is the set {y : xy ∈ E(G)}. More generally, for
any X ⊆ V(G), let NG(X) stand for the set

∪
x∈X NG(x). We use the notation NG[X] for X ∪NG(X). For

any S ⊆ V(G), G[S] records the subgraph of G induced by S. A rooted graph is a graph G together with
a distinguished vertex rG ∈ V(G), called the root of G. A rooted tree is a rooted graph in which each
vertex has a unique path going to the root. A rooted subgraph of a graph G is a rooted graph H such
that rG = rH and H is a subgraph of G, namely V(H) ⊆ V(G) and E(H) ⊆ E(G). A rooted subgraph H of
G is spanning if V(H) = V(G). If we forget the specification of the root of a rooted graph, we return to
its underlying graph. For any tree T and any two vertices x, y ∈ V(T ), the set of vertices on the unique
path between x and y in T is designated by xTy. Let T be a rooted tree. Write y ≤T x if x ∈ rT Ty. Note
that ≤T is a partial order on V(T ), known as the tree-order with respect to T . Define ⌈x⌉T =̇{y : x ≤T y}
and ⌊x⌋T =̇{y : y ≤T x}. The children of x in T is the set ⌊x⌋T ∩ NT (x), denoted by CT (x); while the set
of descendants of x in T is the set ⌊x⌋T \ {x}, denoted by DT (x). If x ̸= rT , the father of x in T is the
unique element in ⌈x⌉T ∩NT (x), denoted by FT (x). A rooted tree T is called a rooted caterpillar if every
two vertices of T of degree at least two must be comparable in the tree order ≤T . For an illustration, see
Fig. 1. The central stalk of a rooted caterpillar T is the union of rT and the set of vertices of T having
degree at least two. Denote by R, Z and Z+, respectively, the sets of reals, integers, and positive integers.
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Figure 2: Two spanning rooted trees of the rooted 3-cube.

For infinite connected graphs, the existence of spanning rooted trees is equivalent to the Axiom of
Choice or Zorn’s Lemma [Sou08, §2.2]. Note that Zorn’s Lemma is also known as Zorn’s Maximal Theorem
[Lei12] or Hausdorff Maximal Principle [Lew91]. A spanning rooted tree T of a rooted graph G is normal
if the end vertices of every edge of G are comparable in the tree-order ≤T . A normal spanning tree is
also known as a depth-first search tree as the depth-first search on a finite connected graph will produce
a normal spanning tree. Note that an uncountable complete graph obviously cannot have any normal
spanning tree. There are vast research regarding which infinite connected graphs possess normal spanning
trees [BK22, DL01, Hal00, LP99, Pit20, Pit21a, Pit21b]. More generally, people have been interested in
understanding the shape of (rooted) spanning trees of infinite (di)graphs or infinite clique graphs [EPGJ+21,
HTL18, Joó18, Kom92, Pol91, Pol01, PGH21, RS22].

For any graph G, a rooted subtree T of it is called a BBT subtree of G if, for any x, y ∈ V(T ) satisfying
xy ∈ E(G) \ E(T ), it always holds that x and y are incomparable in ≤T but their fathers are comparable in
≤T . Informally speaking, each non-tree edge of G contained in the vertex set of the BBT subtree T must
“lean closely against” a chain in ≤T .

Example 1. (1) If there is v ∈ V(G) such that NG[v] = V(G), then a spanning BBT tree of G could be
chosen as the one rooted at v obtained from G by deleting all edges not incident to v.

(2) Let G be the rooted graph with V(G) = R, E(G) = {xy ∈
(R
2

)
: |x − y| ≤ 1} and rG = 0. We can

construct a spanning BBT tree T of G by specifying E(T ) to be E0∪E−∪E+, where E0 = {xy : x, y ∈
Z, |x− y| = 1}, E− = {xy : x ∈ R \Z, x < 0, y = ⌈x⌉} and E+ = {xy : x ∈ R \Z, x > 0, y = ⌊x⌋}.

(3) In Fig. 2, we paint two spanning trees of the rooted 3-cube, both of them are rooted caterpillars. Only
the one on the left is a spanning BBT tree. Up to graph isomorphism, it is even the unique spanning
BBT tree of the rooted 3-cube. We are wondering if there is any characterization of those countable
connected rooted graphs whose spanning BBT trees are all isomorphic.

(4) We describe three spanning BBT trees of the rooted 4-cube in Fig. 3. Up to graph isomorphism, they
are essentially all the spanning BBT trees in the rooted 4-cube. Note that the one on the right is not
a rooted caterpillar.

(5) For the rooted n-cube, we write γn for its number of spanning BBT trees. One can check that γ1 = 1 =
1!, γ2 = 2 = 2!, γ3 = 6 = 3!, γ4 = 72 = 4!× 3.

Bonamy, Bousquet and Thomasse make use of spanning BBT trees in their study of the Erdös-Hajnal
conjecture [BBT16, Theorem 6] while we appeal to it in our analysis of paths in pseudorandom graphs
weighted by submodular functions [WZ22, Theorem 7]. Bonamy, Bousquet and Thomasse [BBT16, Lemma
2] observe that every finite connected graph has a spanning BBT tree. We find that if the given rooted
graph possesses a well order on its vertex set which is of so-called finite type, then it has a spanning BBT
tree [WZ22, Lemma 3]. Though the existence of a well order of finite type for any finite connected graph is
trivial to see, we are even not clear about its existence for countable infinite graphs. Here is the main result
of this note, whose proof, of course, needs the help of the axiom of countable choice.

Theorem 2. Every connected countable rooted graph has a spanning BBT tree.
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Figure 3: Three spanning BBT trees of the rooted 4-cube.

As indicated in [WZ22, Remark 1], Theorem 2 enables us to adapt the proof of [WZ22, Theorem 7] to
derive the following result:

Corollary 3. Let k > 1 be an integer and let d1, . . . , dk, c be k + 1 positive reals. Let G be a countable
connected graph and let µ be a submodular function defined on 2V(G) such that µ(∅) ≥ 0 and

sup{µ(X) : |V(G) \X| ≤ 1} ≥
k∑

i=1

di + (k − 1)c.

Then, either there exist k disjoint sets D1, . . . , Dk ⊆ V(G) such that µ(Di) ≥ di for all i ∈ [k] of which no
edge of G connects two different Dis, or there exist two subsets B and C of V(G) such that C ⊆ B ⊆ NG[C],
G[C] is a path and µ(B) ≥ c.

For any x = (x1, . . . , xk) ∈ Rk, define |x|∞ = max{|x1|, . . . , |xk|} and |x|2 =
√
x2
1 + · · ·+ x2

k. Let us now
present Theorem 4 as a dimension-two variant of Example 1 (2). If a rooted graph G has a rooted caterpillar
T as its spanning rooted tree, to ensure that T is a spanning BBT tree of G, we only need to check that no
edge of E(G) \ E(T ) will join a vertex at the central stalk of T to a vertex comparable with it in ≤T ; see
Lemma 13. This explains why it is easier to construct a rooted caterpillar as a spanning BBT tree. [WZ22,
Example 12] gives a spanning BBT tree of the infinite grid graph. The construction directly generalizes from
Z2 to R2, thus leading to Theorem 4 (1).

Theorem 4. In any of the following two cases, the rooted graph G has a rooted caterpillar as a spanning
BBT tree.

(1) Let G be the rooted graph with rG = (0, 0), V(G) = R2 and E(G) = {xy ∈
(R2

2

)
: |x− y|∞ ≤ 1}.

(2) Let G be the rooted graph with rG = (0, 0), V(G) = R2 and E(G) = {xy ∈
(R2

2

)
: |x− y|2 ≤ 1}.

Question 5. Take an integer k ≥ 3. For each of the following graphs G, we are wondering if it has any
spanning BBT tree.

(1) Let G be the rooted graph with V(G) = Rk, E(G) = {xy ∈
(Rk

2

)
: |x− y|∞ ≤ 1}, and rG = (0, . . . , 0).

(2) Let G be the rooted graph with V(G) = Rk, E(G) = {xy ∈
(Rk

2

)
: |x− y|2 ≤ 1}, and rG = (0, . . . , 0).

Theorem 6. Let G be a graph. Assume that the following two conditions hold:

(1) For every countable set X ⊆ V(G), NG[X] ̸= V(G).

(2) For every finite set X ⊆ V(G), G[V(G) \NG[X]] is a connected graph.

Then G has no spanning BBT tree.
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Examples 7 and 8 illustrate that Theorem 2 does not extend to uncountable rooted graphs. Note that a
similar difference between countable and uncountable also appears in unfriendly partitions of graphs [Has23].

Example 7. Let G be a rooted graph with vertex set V(G) = R2 in which two distinct vertices (x1, x2) and
(y1, y2) are adjacent if and only if (x1 − y1)(x2 − y2) = 0. Take a countable set X ⊆ V(G). Note that
the intersection of NG[X] with {(x, x) : x ∈ R} is a countable set and so cannot be the whole V(G). In
addition, for any two points (x, y), (x′, y′) ∈ R2 \NG[X], we find that they both belong to NG[(x, y

′)] and
(x, y′) ∈ R2 \NG[X]. We are thus ready to apply Theorem 6 and conclude that G has no spanning BBT tree.

Example 8. Let S be an uncountable set. Let G be a rooted graph with V(G) =
(

S
<∞

)
and E(G) = {AB :

|A△B| = 1}. Take a countable set X ⊆ V(G). Let Y =
∪

x∈X x ⊆ S, which is still a countable set. Take
two distinct vertices z1, z2 ∈ V(G) \ Y and thus we see that v=̇{z1, z2} ∈ V(G) \ NG[X]. Denote by H the
graph G[V(G) \ NG[X]]. Take an arbitrary vertex u ∈ V(H), say u = {u1, . . . , un}. Let s1 = u ∪ {z1},
s2 = u ∪ {z1, z2} and ti = {z1, z2} ∪ {u1, . . . , un−i} for i ∈ [n]. Observe that, for all x ∈ X and i ∈ [n],
we have |s2△x| > |s1△x| > |u△x| ≥ 2 and |ti△x| ≥ |{z1, z2}△x| = 2. Hence (u, s1, s2, t1, . . . , tn = v) is a
path in H. This means that H is a connected graph. An application of Theorem 6 now shows that G has no
spanning BBT tree.

Theorems 2 and 6 suggest the following question.

Question 9. Let G and G′ be two rooted graphs with the same underlying graph. Assume that G has a
spanning BBT tree. Is it true that G′ must have a spanning BBT tree as well?

For those connected graphs without normal spanning trees, people have started to consider their “ap-
proximate” normal spanning trees [KMP21]. It may deserve to find counterpart of this line of research for
spanning BBT trees.

In Section 2, we define good BBT subtrees of a countable rooted graph and introduce a partial order on
good BBT subtrees; with the help of these concepts we finish a proof of Theorem 2 there. We play with
rooted caterpillars and present a proof of Theorems 4 and 6 in Section 3.

2 Good BBT subtree
Let G be a connected rooted graph. A good BBT subtree of G is a quadruple T = (T,◁, c, d), where T
is a rooted subtree of G, ◁ is an acyclic and transitive relation on V(T )=̇V(T ), and c, d are two maps from
V(T ) to 2V(G) such that the following hold:

T0 T is a BBT subtree of G.

T1 For any {x, y} ∈
(
V(T )

2

)
, x and y are comparable in ◁ if and only if FT (x) = FT (y).

T2 For each x ∈ V(T ), the set d(x) coincides with the set of vertices y which are not equal to x but can
reach x in the graph G[RT (x)], where

RT (x)=̇

{
V(G), if x = rT ;(
d(FT (x)) \

(
c(FT (x)) ∪

∪
y◁x d(y)

))
∪ {x}, otherwise.

T3 For each x ∈ V(T ), the set c(x) coincides with NG[d(x)](x).

T4 For each x ∈ V(T ), CT (x) ⊆ c(x) and DT (x) ⊆ d(x).

Note that a consequence of T3 is that

d(x) ⊆ RT (x) ⊆ d(FT (x)) (1)

for all x ∈ V(T ) \ {rT }.
Let G be a rooted graph. Let T 1 = (T1,◁1, c1, d1) and T 2 = (T2,◁2, c2, d2) be two good BBT subtrees

of G. We say that T 2 is an extension of T 1 if T1 is a rooted subtree of T2 and ◁1, c1, d1 are the restrictions
of ◁2, c2, d2 on V(T1). In the case that T 1 = T 2, the extension is called a trivial extension.
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Figure 4: A rooted graph.

Roughly speaking, we want to utilize the concept of good BBT subtrees and their extensions to control
the growing of BBT subtrees so that the growing process will not get stuck before arriving at a spanning
tree; see the proof of Theorem 2. Given a good BBT subtree T = (T,◁, c, d), for each vertex x ∈ V(T ), the
set c(x) is regarded as the potential children of x and the set d(x) is regarded as the potential descendent
set of x for the future extensions of T . When we let the existing good BBT subtree grow a new leaf x, we
will demand y ◁ x for all previous children y of its father; see the proof of Lemma 12.

Example 10 shows that a good BBT subtree of a connected graph may not have any nontrivial extension
even if it is not a spanning tree. However, Lemma 12 claims that every non-spanning finite good BBT subtree
of a connected rooted graph has a nontrivial extension, which is the workhorse for our proof of Theorem 2.
Our proof of Lemma 12 will base on an additional technical lemma, Lemma 11.

Example 10. Let G be the rooted graph with V(G) = {xi−1, yi−1 : i ∈ Z+}, E(G) = {xi−1xi, xi−1yi, yiy0 :
i ∈ Z+} and rG = x0; see Fig. 4. Then a spanning BBT tree H of G can be chosen by setting E(H) =
{yiy0, xixi+1 : i ∈ Z+} ∪ {x0y1, y2x1}.

Let T be the rooted subtree of G induced by V(G) \ {y0}. Let the binary relation ◁ on V(T ) be {(xi, yi) :
i ∈ Z+}. Define c and d to be the maps from V(T ) to 2V(G) such that for all i ∈ Z+, c(xi−1) = {xi, yi},
c(yi) = ∅, d(xi−1) = {xj , yj : j ≥ i− 1} ∪ {z} and d(yi) = {yi}.

One can check that T = (T,◁, c, d) is a good BBT subtree of G. Assume there exists a nontrivial
extension T ′ = (T ′,◁′, c′, d′) of T . Then we have y0 ∈ V(T ′). For yi = FT ′(y0), we now derive that
CT ′(yi) = {y0} ⊈ ∅ = c(yi) = c′(yi), which contradicts T4.

Lemma 11. Let G be a connected rooted graph. Let T = (T,◁, c, d) be a good BBT subtree of G. Suppose
that T does not contain any infinite path. Take v ∈ V(G) \ {rG} and let Xv=̇{x ∈ V(T ) : v ∈ d(x)}. Then
Xv contains a unique vertex x0 such that Xv = ⌈x0⌉T .

Proof. It clearly holds that rT ∈ Xv, and so Xv is nonempty. Note that for any x ∈ Xv \ {rT }, we have
v ∈ d(x) ⊆ d(FT (x)). Since T does not contain any infinite path, it remains to demonstrate the fact that
Xv does not contain two incomparable elements in ≤T , which we prove by contradiction below.

If there were two elements from Xv which are incomparable in ≤T , then we will find two distinct elements
x, y ∈ Xv satisfying FT (x) = FT (y). Without loss of generality, assume that x ◁ y. It then follows from T3
that

d(y) ⊆ RT (y) ⊆ d(FT (y)) \ d(x).

Henceforth, we have v ∈ d(y) ∩ d(x) = ∅, which is absurd.

Lemma 12. Let G be a connected rooted graph. Let T = (T,◁, c, d) be a finite good BBT subtree of G. For
every v ∈ V(G) \V(T ), there exists an extension T ′ of T with v ∈ V(T ′).

Proof. According to Lemma 11, we may assume that Xv = ⌈x0⌉T . Let P = (x0, x1, . . . , xs = v) be a shortest
path between x0 and v in G[d(x0)]. Let T ′ be the unique minimum rooted tree which has T as a rooted
subgraph and has P as a subgraph. Define ◁′ to be the acyclic and transitive relation on V(T ′) such that
y ◁′ x if and only if either y ◁ x or x = x1,FT ′(x) = FT ′(y) = FT (y) = x0. Define c′ and d′ be the maps
from V(T ′) to 2V(T ′) such that c′ |V(T ) = c, d′ |V(T ) = d and (T ′,◁′, c′, d′) fulfills T2 and T3.
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For i = 0, . . . , s, let T i = (Ti,◁i, ci, di) represent the restriction of T ′ on the set V(Ti)=̇V(T ) ∪
{x0, . . . , xi}. Our task is to prove that T ′ = (T ′,◁′, c′, d′) is a good BBT subtree of G. For this pur-
pose, in view of Eq. (1) and Lemma 11, we only need to show that T 1 is a good BBT subtree of G, that
⌈x1⌉T1

is the set of all vertices x from V(T1) satisfying v ∈ d1(x), and that d1(x1) ⊇ {x2, . . . , xs}. By the
same reasoning, one then obtains inductively that T 2, . . . , T s = T ′ are all good BBT subtrees of G, thus
completing the proof.

It is clear from our construction that T 1 satisfies T1, T2 and T3.
We now verify T4 for T 1. A useful observation is

x1 ∈ NG[d(x0)](x0) = c(x0) ⊆ d(x0). (2)

Firstly, we show CT1
(x) ⊆ c1(x) for all x ∈ V(T1). For x ∈ V(T ) \ {x0}, CT1

(x) = CT (x) ⊆ c(x) = c1(x);
it is trivial that CT1(x1) = ∅ ⊆ c1(x1); by Eq. (2) we have CT1(x0) = CT (x0) ∪ {x1} ⊆ c(x0) = c1(x0).

Secondly, let us check that DT1(x) ⊆ d1(x) for all x ∈ V(T1). For all x ∈ V(T ) \ ⌈x0⌉T , it holds
DT1

(x) = DT (x) ⊆ d(x) = d1(x); it is clear that DT1
(x1) = ∅ ⊆ d1(x1); it follows from Eqs. (1) and (2) that

DT1
(x) = DT (x) ∪ {x1} ⊆ d(x) ∪ d(x0) = d(x) = d1(x) for all x ∈ ⌈x0⌉T .
Finally, we have to verify T0 for T 1. Since T is a BBT subtree of G, we only need to prove for all

y ∈ (NG(x1) ∩ V(T )) \ {x0} that y /∈ ⌈x0⌉T and that FT1
(y) = FT (y) and FT1

(x1) = x0 are comparable in
≤T1 .

By way of contradiction, let us assume that y ∈ ⌈x0⌉T . Let y′ be the unique vertex from NG(y) ∩ yTx0.
By Eq. (1), it holds x ∈ d(x0) ⊆ d(y′) ⊆ d(y). Applying T2 for T then yields x ∈ c(y) and so x /∈ d(y′),
which is absurd.

After knowing y /∈ ⌈x0⌉T , we intend to further demonstrate that FT (y) and FT1
(x1) are comparable in

≤T1
. Let z be the smallest upper bound of y and x0 in ≤T . Let {x′} = NG(z)∩zT1x1 and {y′} = NG(z)∩zTy.

It suffices to show either y = y′ or z = x0. Assuming z ̸= x0, there are two cases to consider.

Case 1. x′ ◁1 y′.
If y ̸= y′, then y ∈ RT (y

′) \ {y′} ⊆ RT (x
′). In the graph G[RT (x

′)], we can walk in T1 from x′ to x1,
then pass through the edge x1y, and then walk in T from y to y′. This implies y ∈ d(x′). But we also know
that y ∈ d(y′), which is impossible according to Lemma 11.
Case 2. y′ ◁1 x′.

We indeed shall conclude that this case never happens. Since z ̸= x0, we have x1 ̸= x′. It thus follows
x1 ∈ RT ′(x′)\{x′} ⊆ RT ′(y′). In the graph G[RT ′(y′)], we can reach y′ from x1 by passing through the edge
x1y and then walking along T to go from y to y′. This shows that x1 ∈ d(y′), which combined with the fact
that x1 ∈ d(x′) surely violates the claim of Lemma 11.

Proof of Theorem 2. Let G be a countable connected rooted graph. List all elements of V(G) as {xi : i ∈ Z+}
so that x1 = rG. Let T 1 be the good BBT subtree of G consisting of the only vertex x1. For each positive
integer i ≥ 2, we iteratively define a good BBT subtree T i of G in the sequel. If xi ∈ T i−1, then define
T i =̇ T i−1; if xi /∈ T i−1, let T i be an arbitrary extension of T satisfying xi ∈ V(T i), whose existence is
guaranteed by Lemma 12. We write Ti for the underlying rooted tree of T i for all i ∈ Z+. Lastly, let T be
the rooted subgraph of G with V(T ) =

∪
i∈Z+

V(Ti) = V(G) and E(T ) =
∪

i∈Z+
E(Ti). It is clear that this

T is a required spanning BBT tree of G.

3 Uncountable graph
Lemma 13. Let G be a rooted graph. Let X ⊆ V(G) be a set such that G[X] is a path with rG as one
endpoint and that NG[X] = V(G). Then the rooted graph G has a rooted caterpillar as a spanning BBT tree.

Proof. Let the finite or infinite path G[X] be (rG = x0, x1, . . .). For each v ∈ V(G) \X, let yv=̇xi where i is
the minimum nonnegative integer such that xi ∈ NG(v) ∩X. Let T be the spanning rooted tree of G such
that E(T ) = E(P ) ∪ {vyv : v ∈ V(G) \X}. It is easy to check that T is a rooted caterpillar and a spanning
BBT tree of G.
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Figure 5: Central stalks of two rooted caterpillars on the plane.

Proof of Theorem 4. In view of Lemma 13, to specify a required spanning BBT tree T which is a rooted
caterpillar, we need to find X ⊆ R2 so that G[X] is a path and NG[X] = V(G); indeed, G[X] is the central
stalk of the rooted caterpillar as constructed in the proof of Lemma 13.

(1) Let X =
∪

k∈Z+
{(y1 − 1, 2− 2k), (−2k, y1 + 1), (y2, 2k), (2k, y2) : y1, y2 ∈ Z, |y1| ≤ 2k− 1, |y2| ≤ 2k}.

We have drawn G[X] on the left of Fig. 5.
(2) Let X =

∪
k∈Z+

{(2k− 2)α+ (0, y− 1), (0, 2k− 1)+ (y− 2)α,−2kα+ (y− 1)β,−2kβ + (0, y),−2kβ+

yα, (0,−2k)+yβ : y ∈ Z+, y ≤ 2k}, where α = (
√
3
2 ,− 1

2 ) and β = (
√
3
2 , 1

2 ). The central stalk of the resulting
rooted caterpillar is depicted on the right of Fig. 5.

Lemma 14. Let T be a BBT subtree of a graph G and let W ⊆ V(T ) be a set of pairwise incomparable
elements in the tree order ≤T . Assume that {x, y} ∈

(
W
2

)
and take u ∈ DT (x) and v ∈ DT (y). If P is a path

connecting u and v in G, then P must pass through a vertex of G outside of ∪w∈W DT (w).

Proof. Let the path P be (u = u0, u1, . . . , uℓ = v). Assume, for sake of contradiction, that u0, . . . , uℓ all fall
into ∪w∈W DT (w). This means that FT (u0), . . . ,FT (uℓ) all belong to ∪w∈W ⌊w⌋T . As distinct elements from
W are incomparable in ≤T , we know that ⌊w⌋T , w ∈ W , are pairwise disjoint. Note that FT (u0) ∈ ⌊x⌋T
and FT (uℓ) ∈ ⌊y⌋T . We thus find that there exists a positive integer t ≤ ℓ such that FT (ut−1) ∈ ⌊w⌋T and
FT (ut) ∈ ⌊w′⌋T for two distinct elements w,w′ ∈ W . Consequently, we find that utut−1 ∈ E(G)\E(T ) while
FT (ut−1) and FT (ut) are incomparable in ≤T . This contradicts the fact that T is a BBT subtree of G.

Lemma 15. Let G be a graph. Assume that, for every finite set X ⊆ V(G), G[V(G)\NG[X]] is a connected
graph. If T is a spanning BBT tree of G, then T is a rooted caterpillar.

Proof. Since v ≤T rT holds for every v ∈ V(T ), we derive from the definition of BBT subtree that NT (rT ) =
NG(rT ). We claim that there is at most one vertex x from NT (rT ) such that DT (x) ̸= ∅. If this were not true,
we will find four different vertices x, y, u, v such that x, y ∈ NT (rT ), u ∈ DT (x) and v ∈ DT (y). By Lemma 14,
there does not exist any path of G connecting u to v and lying inside

∪
w∈NG(rT ) DT (w) = V(G) \ NG[rT ].

But this is impossible as our assumption gives that V(G) \NG[rT ] induces a connected subgraph of G.
If there is no vertex x from NT (rT ) such that DT (x) ̸= ∅, then T is surely a rooted caterpillar. Otherwise,

we suppose that x is the unique vertex from NT (rT ) such that DT (x) ̸= ∅. Let U be the set NG[rT ] \ {x}.
Let G′ and T ′ be the subgraph obtained from G and T , respectively, by removing all vertices from U . We
choose x as the root to make T ′ a rooted tree. It is clear that T ′ is a spanning BBT tree of G′. Observe
that V(G′) \ NG′ [x] = V(G) \ NG[X] for X = {x, rT }. Therefore, the same argument as above shows that
there is at most one vertex x′ from NT ′(rT ′) = CT (x

′) such that DT (x
′) = DT ′(x′) ̸= ∅.

Continuing in this way, we can see that T is a rooted caterpillar, as desired.

Proof of Theorem 6. If G has a spanning BBT tree, say T , Condition (2) along with Lemma 15 says that T
must be a rooted caterpillar. Let S be the set of vertices of T having degree at least two and let X = S∪{rT }.
Then we find that NG[X] ⊇ NT [X] = V(T ) = V(G), violating Condition (1).
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