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Abstract

Let D be a digraph. The competition graph of D is the graph having the same vertex set with D and
having an edge joining two different vertices if and only if they have at least one common out-neighbor
in D. The phylogeny graph of D is the competition graph of the digraph constructed from D by adding
loops at all vertices. The competition/phylogeny number of a graph is the least number of vertices to be
added to make the graph a competition/phylogeny graph of an acyclic digraph. In this paper, we show
that for any integer k there is a connected graph such that its phylogeny number minus its competition
number is greater than k. We get similar results for hypergraphs.
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1 Introduction

For any positive integer n, let [n] denote the set {1, . . . , n}. For any set {u, v} of two elements, we often use

the shorthand uv. A graph G comprises a vertex set V(G) and an edge set E(G) such that E(G) ⊆
(
V(G)

2

)
.

For a nonnegative integer `, a walk of length ` in G between vertices v0 and v` of G is a sequence v0, . . . , v`
of vertices of G such that vi−1vi ∈ E(G) for all i ∈ [`]. We denote the length of a walk W by |W |. A graph
G is called connected if for each pair of vertices in G, there is a walk in G between them.

A digraph D consists of a vertex set V(D) and an arc set A(D) such that A(D) ⊆ V(D)× V(D). A loop
in D at vertex v of D is the arc (v, v) ∈ A(D). For a digraph D, let D◦ denote the digraph obtained from D
by adding loops, namely, V(D◦) = V(D) and A(D◦) = A(D) ∪ {(v, v) : v ∈ V(D)}. For a positive integer `,
we call a sequence v0, v1, . . . , v` of `+ 1 vertices of D a cycle of length ` in D if v0 = v`, (vi−1, vi) ∈ A(D) for
each i ∈ [`], and vi 6= vj for all distinct i, j ∈ [`]. A digraph is said to be acyclic if there is no cycle in it.

For a graph G (resp. digraph D) and for a set X ⊆ V(G)
(
resp. X ⊆ V(D)

)
, the subgraph (resp.

subdigraph) of G (resp. D) induced by X, denoted by G[X] (resp. D[X]), is the graph (resp. digraph)
consisting of the vertex set X and the edge set E(G) ∩

(
X
2

) (
resp. arc set A(G) ∩ (X ×X)

)
. For two graphs

G and H, we write H CG if H = G[V(H)].
Let D be a digraph and let u and v be two not necessarily distinct vertices of D. We say that u is an

in-neighbor of v in D and v is an out-neighbor of u in D if (u, v) ∈ A(D). The set of in-neighbors of v in D,
denoted by N−D(v), is called the in-neighborhood of v in D, while the set of out-neighbors of v in D, denoted
by N+

D(v), is called the out-neighborhood of v in D.
Let D be a digraph D. The competition graph of D [Coh68], denoted by C(D), is the graph satisfying

V
(
C(D)

)
= V(D) and E

(
C(D)

)
=
{
uv : N+

D (u) ∩N+
D (v) 6= ∅

}
.

The competition graph of D◦, which is designated by P(D), is called the phylogeny graph of D [RS98]. In
the study of graphical models, a moral graph [Lau96, §2.1.1], which is obtained from an acyclic digraph by
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“marrying parents and deleting directions” [Lau96, §3.2.2], turns out to be the phylogeny graph of an acyclic
digraph. The triangulation of moral graphs plays an active role in Bayesian networks [LS88, Pea86].

Let i and j be positive integers and let G be a graph. An (i, j) digraph [LCKS17] is a digraph whose in-
degrees are bounded by i and out-degrees are bounded by j. The graph G is an (i, j) competition (resp. (i, j)
phylogeny) graph [EK18] if there exists an acyclic (i, j) digraph D such that G = C(D)

(
resp. G = C(D◦)

)
.

The (i, j) competition (resp. (i, j) phylogeny) number of G, denoted by κ(i,j)(G)
(
resp. φ(i,j)(G)

)
, is the

minimum value of |V(D)| − |V(G)|, where D runs through all the (i, j) digraphs such that GC C(D)
(
resp.

GCP(D)
)
. In most species, a child has only two biological parents, and so it is interesting to study κ(2,j)(G)

and φ(2,j)(G). It is immediate that κ(i1,j1)(G) ≤ κ(i2,j2)(G) and φ(i1,j1)(G) ≤ φ(i2,j2)(G) whenever i1 ≥ i2
and j1 ≥ j2. Denote by κ(G) and φ(G) the competition number and the phylogeny number of G, respectively,
such that

κ(G) = lim
i,j→∞

κ(i,j)(G) and φ(G) = lim
i,j→∞

φ(i,j)(G).

We say that G is a competition (resp. phylogeny) graph if κ(G) = 0
(
resp. φ(G) = 0

)
.

A hypergraph H comprises its vertex set V (H) 6= ∅ and its edge set E(G) ⊆
(
V(H)
≥2
)
. Let D be a digraph.

The competition hypergraph of D [ST04], denoted by CH(D), is the hypergraph consisting of the vertex set
V
(
CH(D)

)
= V(D) and the hyperedge set

E
(
CH(D)

)
= {e ∈

(
V(D)

≥ 2

)
: ∃v ∈ V(D) s.t. e = N−D(v)}.

Denoted by PH(D) the phylogeny hypergraph of D [WXZ19] such that

PH(D) = CH(D◦).

The ST-competition number (resp. ST-phylogeny number) of a hypergraph H, denoted by κST(H)
(
resp.

φST(H)
)
, is the least cardinality of the set V(D) \V(H) where D runs through all acyclic digraphs satisfying

H C CH(D)
(
resp. H C PH(D)

)
.

The problems of computing κ(G) and φ(G) are proved to be NP-complete [Ops82, RS98]. To calculate
the competition numbers and the phylogeny numbers for various graph classes has been one of the important
problems in the research of competition/phylogeny graphs. There are many related works [Kim17, KPS12,
KS08, Kuh13, Rob78, WL10, WXZ19]. Note that the simple “adding loops” operation is all the difference
between defining competition numbers and phylogeny numbers. To which extent can we understand the
consequence of this small twist? Wu, Xiong and Zaw observed the following relationship between φ and κ in
2018.

Theorem 1. (Wu-Xiong-Zaw [WXZ19, Theorem 9])

(i) There exists a graph G such that φ(G)− κ(G) + 1 = k if and only if k is a nonnegative integer.

(ii) There exists a hypergraph H such that φST(H) − κST(H) + 1 = k if and only if k is a nonnegative
integer.

Problem 2. (i) Is it true that for every nonnegative integer k, there exists a connected graph G satisfying
φ(G)− κ(G) + 1 = k?

(ii) Is it true that for every nonnegative integer k, there exists a connected hypergraph H satisfying φST(H)−
κST(H) + 1 = k?

(iii) For any nonnegative integer k, does there exist a graph G satisfying φ(2,j)(G)− κ(2,j)(G) + 1 = k?

(iv) For any nonnegative integer k, does there exist a connected graph G satisfying φ(2,j)(G)−κ(2,j)(G)+1 =
k?

(v) Let n be a positive integer. Put a(n) = max{φ(G)− κ(G) + 1 : |V(G)| = n}. Can we determine a(n)?
What is the asymptotic behavior of a(n)?
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(vi) Can we classify the graphs G such that φ(G)−κ(G)+1 = 0? More generally, can we classify the graphs
G with a “small” value of φ(G)− κ(G) + 1?

Theorem 1 (i) is proved by calculating φ and κ for the disjoint union of some complete tripartite graphs.
If we take a connected graph G from those graphs whose competition numbers and phylogeny numbers
are known, say line graphs, chordal graphs, or complete tripartite graphs, we always find that the value
of φ(G) − κ(G) + 1 vanishes. It is somehow surprising for us to finally discover that applying φ−κ+1 to
connected graphs can yield arbitrarily large values. The main result of this paper is the following, which and
its proof may help to further tackle Problem 2.

Theorem 3. (i) For any integer k, there exists a connected graph G such that φ(3,5)(G)−κ(3,5)(G)+1 ≥ k.

(ii) For any integer k, there exists a connected graph G such that φ(G)− κ(G) + 1 ≥ k.

(iii) For any integer k, there exists a connected hypergraph H such that φST(G)− κST(G) + 1 ≥ k.

To be able to get precise value of the competition number and phylogeny number of a connected graph,
it is natural that we have to assume some good structural properties of the graph. But so far those graphs
G with large difference between φ(G) and κ(G) seem to be outside of those good graph classes which allow
us to get exact values of φ(G) and κ(G). Accordingly, though we will need some prelimary results from
[KS08, WXZ19], our proof of Theorem 3 needs new constructions and has new perspectives which is not seen
in the proof of Theorem 1.

There are more variants of the constructions of competition graphs, say double competition graphs [Sco87]
and niche hypergraphs [GST16]. Accordingly, there arises the problem of calculating the corresponding param-
eters, say the double competition numbers [JLRS87] and the niche numbers [FG92]. For these constructions,
problems like Problem 2 may also deserve some attention as any work in that line will demonstrate our success
in analyzing the possibly intricate effect caused by the simple operation of “adding loops.”

2 Proof

Let X and Y be two sets. The disjoint union of X and Y is the set XtY := {(x, 1) : x ∈ X}∪{(y, 2) : y ∈ Y }.
The disjoint union of two graphs G1 and G2, denoted by G1 t G2, is the graph consisting of the vertex set
V(G1) t V(G2) and the edge set

{
(u, i)(v, i) : uv ∈ E(G1) ∪ E(G2), i ∈ [2]

}
. Similarly, the disjoint union of

two digraphs D1 and D2, denoted by D1 tD2, is the digraph with the vertex set V(D1)tV(D2) and the arc
set {

(
(u, i), (v, i)

)
: (u, v) ∈ A(D1) ∪ A(D2), i ∈ [2]

}
. For any nonnegative integer n, we use In(G) to stand

for the graph G together with additional n isolated vertices. Namely, In(G) = G t In, where In is the graph
with n vertices and no edges.

Remark 4. It is easy to see that the competition number of G is the least nonnegative integer k such that
Ik(G) = C(D) for some acyclic digraph D.

Let D be a digraph. We call v ∈ V(D) a source vertex of D if N−D(v) = ∅ and we call v a sink or terminal
vertex of D if N+

D(v) = ∅. We use S(D) and T(D) to denote the collection of source vertices and sink vertices
of D, respectively. Let ∼ be an equivalence relation on V(D). We use the notation [v] to represent the
equivalence class containing v. Then the quotient digraph D/ ∼ is defined as follows:

V(D/ ∼) = {[v] : v ∈ V(D)} and A(D/ ∼) = {([u], [v]) : uv ∈ A(D)}.

Let D1 and D2 be two digraphs, let X ⊆ T(D1) and Y ⊆ S(D2) be two sets of equal size, and let f be a
bijection from X to Y . Define ∼f to be the equivalence relation on V(D1) t V(D2) such that the vertices
(v, 1) and (u, 2) are equivalent if and only if f(v) = u. We write D1 tf D2 for the digraph D1 tD2/ ∼f .

Remark 5. For each ` ∈ [2], let D` be an acyclic (i`, j`) digraph. For two sets X ⊆ T(D1) and Y ⊆
S(D2) of the same size and for a bijection f ∈ Y X , it is easy to check that D1 tf D2 is an acyclic
(max{i1, i2},max{j1, j2}) digraph and that I|X|

(
C(D1 tf D2)

)
= C(D1) t C(D2).
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Lemma 6. Let G be a graph and let D be an acyclic (i, j) digraph satisfying Ik(G) = C(D) for some
nonnegative integer k. Let ` = min{k, |S(D)|} and let m be a positive integer. Then it holds

κ(i,j)(
⊔
m

G) ≤ mk − `(m− 1). (1)

Proof. Let D1 = D2 = · · · = Dm = D. For each t ∈ [m], we choose a set Xt ⊆ V(Dt) \ V(G) ⊆ T(Dt)
and a set Yt ⊆ S(Dt) such that |Xt| = |Yt| = `. Let fi ∈ Yt+1

Xi be a bijection for each t ∈ [m − 1] and let
D̄t := Dt tft · · · tfm−1

Dm for each t ∈ [m]. It follows from Remark 5 that D̄1 is an acyclic (i, j) digraph and
that Imk

(⊔
mG

)
= C(D1) t · · · t C(Dm) = I`

(
C(D1) t · · · t C(Dm−2) t C(D̄m−1)

)
= · · · = I(m−1)`

(
C(D̄1)

)
,

implying Eq. (1), as wanted.

Lemma 7. (Roberts-Sheng [RS98, Lemma 6]) For any two graphs G1 and G2, it holds φ(G1 t G2) =
φ(G1) + φ(G2).

Lemma 8. Let G be a graph and let i and j be integers such that φ(G) = φ(i,j)(G). Then φ(i,j)(
⊔m

t=1G) =

φ(
⊔m

t=1G) = mφ(G) for every nonnegative integer m.

Proof. Let D be an acyclic (i, j) digraph such that G C P(D) and |V(D)| − |V(G)| = φ(G). Observe that⊔m
t=1GCP(

⊔m
t=1D) and |V(

⊔m
t=1D)|−|V(

⊔m
t=1G)| = mφ(G). This indicates that φ(i,j)(

⊔m
t=1G) ≤ mφ(G).

By Lemma 7, we then obtain mφ(G) = φ(
⊔m

t=1G) ≤ φ(i,j)(
⊔m

t=1G) ≤ mφ(G). This proves the lemma.

Let G be a graph. We define DistG(u, v) to be

DistG(u, v) := min
{
|W | : W is a walk in G between u and v

}
,

where we use the convention that the minimum of an empty set is +∞. For two different vertices u and v
of G, we write G + uv for the graph consisting of the vertex set V(G) and the edge set E(G) ∪ {uv}. For
any positive integer n, a complete graph of order n is a graph on n vertices and with all possible

(
n
2

)
edges.

A nonempty subset X of V(G) is a clique of G provided G[X] is a complete graph. A clique of G is called
maximal whenever it is not properly contained in another clique of G. Let D be a digraph. For two vertices
u and v of D, we denote D− (u, v) for the digraph with the vertex set V(D) and the arc set A(D) \

{
(u, v)

}
.

Lemma 9. Let G be a graph and let u and v be two vertices of G such that DistG(u, v) ≥ 3. Then φ(G+uv) ≥
φ(G).

Proof. Write p = φ(G+ uv). To finish the proof, it suffices to construct a digraph D satisfying

|V(D)| ≤ |V(G)|+ p (2)

and
GC P(D). (3)

By the definition of phylogeny number, there exists an acyclic digraph D′ such that G+ uv C P(D′) and
|V(D′)| − |V(G + uv)| = p. Let D = D′

[
V(D′)

]
− (u, v) − (v, u). It is easy to see |V(D)| = |V(D′)| =

|V(G+ uv)|+ p = |V(G)|+ p. This proves Eq. (2).

To verify Eq. (3), we need to show both E
(
P(D)

)
∩
(
V(G)

2

)
⊆ E(G) and E(G) ⊆ E

(
P(D)

)
. To show

E
(
P(D)

)
∩
(
V(G)

2

)
⊆ E(G), it is suffice to prove uv /∈ E

(
P(D)

)
. Since DistG(u, v) ≥ 3, uv is a maximal

clique in G + uv. Then N+
D′(u) ∩N+

D′(v) = ∅. Therefore uv /∈ E
(
P(D′ − (u, v) − (v, u))

)
= E

(
P(D)

)
. We

now try to prove E(G) ⊆ E
(
P(D)

)
. Let xy ∈ E(G). Since uv /∈ E(G), |{x, y} ∩ {u, v}| ∈ {0, 1}. We only

need to consider the following two cases.

Case 1 |{x, y} ∩ {u, v}| = 0.
By {x, y} ∩ {u, v} = ∅, it holds that N+

D (x) = N+
D′(x) and N+

D (y) = N+
D′(y). Since xy ∈ E

(
P(D′)

)
, we

have xy ∈ E
(
P(D)

)
.
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Case 2 |{x, y} ∩ {u, v}| = 1.
Without loss of generality, we assume that x = u and y 6= v. Since uv is a maximal clique in G+uv, we have

v /∈ N+
D′(u) ∩N+

D′(y) = N+
D′(x) ∩N+

D′(y). By the construction, N+
D (y) = N+

D′(y) and N+
D (x) = N+

D′(x) \ {v}.
Then xy ∈ E

(
P(D)

)
.

Let n and m be positive integers. We use the notation Kn
m for the uniform complete multipartite graph

with m parts and uniform part size n, namely a graph whose vertex set is partitioned into n parts of equal
size m such that two vertices are adjacent if and only if they are from different parts. Note that K1

m is a
complete graph of order m.

As a final preparation for our proof of Theorem 3, we recall two results from [KS08, WXZ19]. We mention
that the claims on degree-bounded competition/phylogeny number in Lemmas 10 and 11 should be read from
the proofs presented in [KS08, WXZ19].

Lemma 10. (Kim-Sano [KS08, Theorem 1]) For n ≥ 2, κ(Kn
3 ) = n2 − 3n+ 4. Moreover, there is an acyclic

(3, 3) digraph D such that C(D) = In2−3n+4(Kn
3 ) and |S(D)| = n2− 3n+ 4, and so κ(3,3)(K

n
3 ) = n2− 3n+ 4.

Lemma 11. (Wu-Xiong-Zaw [WXZ19, Theorem 2(iii)]) For n ≥ 2, φ(Kn
3 ) = n2 − 3n+ 3 and φ(3,3)(K

n
3 ) =

n2 − 3n+ 3.

K3
3 K3

3

K3
3 K3

3

v1 v2

v4 v3

Figure 1: G4.

Proof of Theorem 3. Pick a positive integer m with m ≥ 4. For each t ∈ [m], let Gt = K3
3 and let vi be a

vertex of Gi. Denote by Gm the connected graph

m⊔
t=1

Gt + v1v2 + v2v3 + · · ·+ vm−1vm + vmv1.

See Fig. 1 for an illustration of Gm when m = 4.
To prove (i) and (ii), we assume, without loss of generality, that k ≥ 4. By Lemmas 6 and 10 we obtain

that κ(3,3)(
⊔k

t=1Gi) ≤ 4. According to the definition of competition graphs, it is easy to verify that

κ(Gk) ≤ κ(3,5)(Gk) ≤ κ(3,3)(
k⊔

t=1

Gt) + |E(Gk) \ E(

k⊔
t=1

Gt)| = κ(3,3)(

k⊔
t=1

Gt) + k ≤ 4 + k. (4)

Since k ≥ 4, no edge from {v1v2, v2v3, . . . , vk−1vk, vkv1} can appear in a triangle of Gk. Then we can apply
Lemmas 8, 9 and 11 to obtain that

φ(3,5)(Gk) ≥ φ(Gk) ≥ φ(

k⊔
t=1

Gt) = φ(3,3)(

k⊔
t=1

Gt) = k φ(3,3)(K
3
3 ) = 3k. (5)

Combining Eqs. (4) and (5), we know that Gk is a connected graph satisfying

φ(3,5)(Gk)− κ(3,5)(Gk) + 1 ≥ 3k − (k + 4) + 1 = 2k − 3 > k,

and
φ(Gk)− κ(Gk) + 1 ≥ φ(Gk)− κ(3,5)(Gk) + 1 ≥ 3k − (k + 4) + 1 = 2k − 3 > k.
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This is the proof of (i) and (ii).
We proceed to prove (iii). By Theorem 1 (ii), there exists a hypergraph H such that φST(H)−κST(H)+1 =

k+ 1 ≥ 0. Surely, we only need to consider the case that V(H) /∈ E (H). Let H ′ be the connected hypergraph
obtained by adding the hyperedge V(H) to H. Let D′ be an acyclic digraph with H ′ CPH(D′). Then there
exists a vertex v of D′ such that N−D′(v)∪{v} = V(H). Let D be the digraph obtained from D′ by deleting the
arcs in the set {(x, v) : x ∈ N−D (v)}. Note that H CPH(D) and D is acyclic. This shows φST(H ′) ≥ φST(H).
From the construction of H ′, it follows κST(H ′) ≤ κST(H) + 1. Hence

φST(H ′)− κST(H ′) + 1 ≥ φST(H)− (κST(H) + 1) + 1 = φST(H)− κST(H) = k.

This proves (iii), as required.
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